21

The Schrodinger Equation in a Classical
Context: A Seminar on Superconductivity

21-1 Schrodinger’s equation in a magnetic field

This lecture is only for entertainment. I would like to give the lecture in a
somewhat different style—just to see how it works out. It’s not a part of the course
—in the sense that it is not supposed to be a last minute effort to teach you some-
thing new. But, rather, I imagine that I’'m giving a seminar or research report on
the subject to a more advanced audience, to people who have already been educated
in quantum mechanics. The main difference between a seminar and a regular
lecture is that the seminar speaker does not carry out all the steps, or all the
algebra. He says: “If you do such and such, this is what comes out,” instead
of showing all of the details. So in this lecture I'll describe the ideas all the way
along but just give you the results of the computations. You should realize that
you’re not supposed to understand everything immediately, but believe (more or
less) that things would come out 1f you went through the steps.

All that aside, this is a subject I want to talk about. It is recent and modern
and would be a perfectly legitimate talk to give at a research seminar. My subject
is the Schrodinger equation in a classical setting—the case of superconductivity.

Ordinarily, the wave function which appears in the Schrodinger equation
applies to only one or two particles. And the wave function itself is not some-
thing that has a classical meaning—unlike the electric field, or the vector potential,
or things of that kind. The wave function for a single particle is a “field”—in
the sense that it is a function of position—but it does not generally have a classical
significance. Nevertheless, there are some situations in which a quantum me-
chanical wave function does have classical significance, and they are the ones I
would like to take up. The peculiar quantum mechanical behavior of matter on
a small scale doesn’t usually make itself felt on a large scale except in the standard
way that it produces Newton’s laws—the laws of the so-called classical mechanics.
But there are certain situations in which the peculiarities of quantum mechanics
can come out in a special way on a large scale.

At low temperatures, when the energy of a system has been reduced very,
very low, instead of a large number of states being involved, only a very, very
small number of states near the ground state are involved. Under those circum-
stances the quantum mechanical character of that ground state can appear on a
macroscopic scale. It is the purpose of this lecture to show a connection between
quantum mechanics and large-scale effects—not the usual discussion of the way
that quantum mechanics reproduces Newtonian mechanics on the average, but a
special situation in which quantum mechanics will produce its own characteristic
effects on a large or “macroscopic” scale.

I will begin by reminding you of some of the properties of the Schrodinger
equation.} I want to describe the behavior of a particle in a magnetic field using
the Schrodinger equation, because the supcrcdnductive phenomena are involved
with magnetic fields. An external magnetic field is described by a vector potential,
and the problem is: what are the laws of quantum mechanics in a vector potential ?
The principle that describes the behavior of quantum mechanics in a vector
potential is very simple. The amplitude that a particle goes from one place to
another along a certain route when there’s a field present is the same as the ampli-

+ I’m not really reminding you, because I haven’t shown you some of these equations
before; but remember the spirit of this seminar.
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Fig. 21--1. The amplitude to go from
a to b along the path T' is proportional to

exp (1q/h) f:’A - ds.

tude that it would go along the same route when there’s no field, multiplied by the
exponential of the line integral of the vector potential, times the electric charge
divided by Planck’s constant' (see Fig. 21-1):
o
<b|a>u\ 4= <b[a>‘4=0'exp{£g/ AdS] (211)
It 1s a basic statement of quantum mechanics.
Now without the vector potential the Schrodinger equation of a charged
particle (nonrelativistic, no spin) is
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where ¢ 1s the electric potential so that g¢ is the potential energy.t Equation (21.1)
1s equivalent to the statement that in a magnetic field the gradients in the Hamilton-
1an are replaced in each case by the gradient minus g4, so that Eq. (21.2) becomes

— W qey = ﬁ(? vV — qA>~<? v - qA>¢+ qev.  (21.3)

This is the Schrodinger equation for a particle with charge ¢ moving in an elec-
tromagnetic field 4, ¢ (nonrelativistic, no spin).

To show that this 1s true I'd like to 1illustrate by a simple example 1n which
mnstead of having a continuous situation we have a line of atoms along the x-axis
with the spacing b and we have an amplitude — KX for an electron to jump from
one atom to another when there is no field.] Now according to Eq. (21.1) if
there’s a vector potential in the x-direction A4,(x, f), the amplitude to jump will
be altered from what 1t was before by a factor exp (1q/hA.b), the exponent being
1g/# times the vector potential integrated from one atom to the next. For simplicity
we will write (g/h)A, = f(x), since 4, will, in general, depend on x. If the ampli-
tude to find the electron at the atom “n” located at x is called C(x) = C,, then
the rate of change of that amplitude is given by the following equation®

_h3 C(x) = EyC(x) — Ke D 0(x 4 b)

1 dt
— KetMO=NDo _ py. (21.4)

There are three pieces. First, there’s some energy E, if the electron 1s located
at x. As usual, that gives the term £,C(x). Next, there is the term — KC(x + b),
which 1s the amplitude for the electron to have jumped backwards one step from
atom “n 4 1,” located at x + b. However, 1n doing so in a vector potential, the
phase of the amplitude must be shifted according to the rule in Eq. (21.1). If 4,
is not changing appreciably 1n one atomic spacing, the integral can be written as
Just the value of 4, at the midpoint, times the spacing b. So (:g/#) times the integral
1s just bf(x + b/2). Since the electron 1s jumping backwards, 1 showed this
phase shift with a minus sign. That gives the second piece. In the same manner
there’s a certain amplitude to have jumped from the other side, but this time we
need the vector potential at a distance (b/2) on the other side of x, times the dis-
tance b. That gives the third piece. The sum gives the equation for the amplitude
to be at x in a vector potential

Now we know that if the function C(x) 1s smooth enough (we take the long
wavelength himit), and if we let the atoms get closer together, Eq. (16 4) will
approach the behavior of an electron 1n free space. So the next step is to expand
both sides of (21.4) in powers of b, assuming b is very small. For example, if b
is zero the right-hand side 1s just (Eo — 2K)C(x). so in the zeroth approximation

1 Volume 11, Section 15-5.

t Not to be confused with our earlier use of ¢ for a state label!

1 K is the same quantity that was called 4 n the problem of a linear lattice with no
magnetic field See Chapter 13.
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the energy is Eg — 2K. Next comes the terms in . But because the two ex-
ponentials have opposite signs, only even powers of b remain. So if you make a
Taylor expansion of C(x), of f(x), and of the exponentials, and then collect the
terms in b%, you get

7 9C(x)
1 ot

= E,C(x) — 2KC(x)
— Kb?*{C"(x) — 2f(x)C'(x) — if'(N)C(x) — fA()C(x)}.  (21.5)

(The “primes” mean differentiation with respect to x.)
Now this horrible combination of things looks quite complicated. But
mathematically it’s exactly the same as

hACKX) _ . B 2[1_. ][i_~ ]
~ 7 = (Eo — 2K)C(x) — Kb I if(x) ix if(x)| C(x). (21.6)
The second bracket operating on C(x) gives C’(x) plus if(x)C(x). The first bracket
operating on these two terms gives the C’’ term and terms in the first derivative
of f(x) and the first derivative of C(x). Now remember that the solutions for zero
magnetic field? represent a particle with an effective mass m.s given by

h

Kb = — .
ST

If you then set £, = —2K, and put back f(x) = (g/h)A., you can easily check
that Eq. (21.6) is the same as the first part of Eq. (21.3). (The origin of the potential
energy term is well known, so I haven’t bothered to include it in this discussion.)
The proposition of Eq. (21.1) that the vector potential changes all the amplitudes
by the exponential factor is the same as the rule that the momentum operator,
(h/i)V gets replaced by

%V—qA,

as you see in the Schrédinger equation of (21.3).

21-2 The equation of continuity for probabilities

Now I turn to a second point. An important part of the Schrodinger equation
for a single particle is the idea that the probability to find the particle at a position
is given by the absolute square of the wave function. It is also characteristic of
the quantum mechanics that probability is conserved in a local sense. When the
probability of finding the electron somewhere decreases, while the probability of
the electron being elsewhere increases (keeping the total probability unchanged),
something must be going on in between. In other words, the electron has a con-
tinuity in the sense that if the probability decreases at one place and builds up
at another place, there must be some kind of flow between. If you put a wall, for
example, in the way, it will have an influence and the probabilities will not be the
same. So the conservation of probability alone is not the complete statement of
the conservation law, just as the conservation of energy alone is not as deep and
important as the local conservation of energy.® If energy is disappearing, there
must be a flow of energy to correspond. In the same way, we would like to find a
“current” of probability such that if there is any change in the probability density
(the probability of being found in a unit volume), it can be considered as coming
from an inflow or an outflow due to some current. This current would be a vector
which could be interpreted this way—the x component would be the net prob-
ability per second and per unit area that a particle passes in the x direction across
a plane parallel to the y-z plane. Passage toward +x is considered a positive
flow, and passage in the opposite direction, a negative flow.

2 Section 13-3.
3 Volume II, Section 27~1.
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Is there such a current? Well, you know that the probability density P(r, f)
is given in terms of the wave function by

P(r, 1) = ¥*(r, ¥Ar, 1). QL7
I am asking: Is there a current J such that

JoP
— == — . b4

EY V- J? (21.8)
If 1 take the time derivative of Eq. (21.7), I get two terms:

P _ .oy
ar EY]

oy*
+ ¢ ¥T3 (21.9)
Now use the Schrodinger equation—Eq. (21.3)—for 8y/d1; and take the complex

conjugate of it to get dy*/dr—each i gets its sign reversed. You get

oP ie 1 (h A
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1 (£ NE " * (21.10)
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The potential terms and a lot of other stuff cancel out. And it turns out that what
is left can indeed be written as a perfect divergence. The whole equation is equiva-
lent to

L (h
%‘; - ‘V'{m‘”*<7 v — qA>¢ + w(— ’7’ v — qA>¢*’~ QLI

It is really not as complicated as it seems. It is a symmetrical combination of
Y* times a certain operation on ¢, plus y* times the complex conjugate operation
on . It is some quantity plus its own complex conjugate, so the whole thing is
real—as it ought to be. The operation can be remembered this way: it is just the
momentum operator ® minus g4. I could write the current in Eq. (21.8) as

i-1 {[“’_—‘” ¢]*¢ + oy [—‘if;"ﬁ]sp]v 2L12)

m m

There is then a current J which completes Eq. (21.8).

Equation (21.10) shows that the probability is conserved locally. If a particle
disappears from one region it cannot appear in another without something going
on in between. Imagine that the first region is surrounded by a closed surface far
enough out that there is zero probability to find the electron at the surface The
total probability to find the electron somewhere inside the surface is the volume
integral of P. But according to Gauss’s theorem the volume integral of the di-
vergence J is equal to the surface integral of J. If ¢ is zero at the surface, Eq.
(21.10) says that J is zero, so the total probability to find the particle inside can’t
change. Only if some of the probability approaches the boundary can some of it
leak out. We can say that 1t only gets out by moving through the surface—and
that is local conservation.

21-3 Two kinds of momentum

The equation for the current is rather interesting, and sometimes causes a
certain amount of worry. You would think the current would be something like
the density of particles times the velocity. The density should be something like
yy*, which is 0.k. And each term in Eq. (21.12) looks like the typical form for the
average-value of the operator

® — g4
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so maybe we should think of it as the velocity of flow. It looks as though we have
two suggestions for relations of velocity to momentum, because we would also
think that momentum divided by mass, ®/m, should be a velocity. The two possi-
bilities differ by the vector potential.

It happens that these two possibilities were also discovered in classical physics,
when it was found that momentum could be defined in two ways.* One of them
is called “kinematic momentum,” but for absolute clarity I will in this lecture call
it the “mv-momentum.” This 1s the momentum obtained by multiplying mass
by velocity. The other is a more mathematical, more abstract momentum, some-
times called the “dynamical momentum,” which I'll call “p-momentum.” The
two possibilities are

my-momentum = mw, (21.14)
p-momentum = my + gA. (21.15)

It turns out that in quantum mechanics with magnetic fields 1t is the p-momentum
which is connected to the gradient operator ®, so it follows that (21.13) is the
operator of a velocity.

I'd ike to make a brief digression to show you what this is all about—why
there must be something like Eq. (21.15) in the quantum mechanics. The wave
function changes with time according to the Schrodinger equation in Eq. (21.3).
If I would suddenly change the vector potential, the wave function wouldn’t
change at the first instant; only 1ts rate of change changes. Now think of what
would happen in the following circumstance. Suppose I have a long solenoid, in
which I can produce a flux of magnetic field (B-field), as shown in Fig. 21-2. And
there is a charged particle sitting nearby. Suppose this flux nearly instantaneously
builds up from zero to something. I start with zero vector potential and then I
turn on a vector potential. That means that I produce suddenly a circumferential
vector potential 4. You’ll remember that the line integral of 4 around a loop is
the same as the flux of B through the loop.® Now what happens if I suddenly turn
on a vector potential? According to the quantum mechanical equation the sudden
change of 4 does not make a sudden change of y; the wave function is still the
same. So the gradient is also unchanged.

But remember what happens electrically when 1 suddenly turn on a flux.
During the short time that the flux is rising, there’s an electric field generated
whose line integral is the rate of change of the flux with time:

A4
~ 3 (21.16)

That electric field is enormous if the flux is changing rapidly, and it gives a force
on the particle. The force is the charge times the electric field, and so during the
build up of the flux the particle obtains a total impulse (that 1s, a change in mv)
equal to —gA. In other words, if you suddenly turn on a vector potential at a
charge, this charge immediately picks up an “mv” momentum equal to —g4A.
But there 1s something that 1sn’t changed immediately and that’s the difference
between mv and —gA4. And so the sum p = mv + g4 is something which is not
changed when you make a sudden change in the vector potential. This quantity
p 1s what we have called the p-momentum and is of 1mportance in classical me-
chanics in the theory of dynamics, but it also has a direct significance in quantum
mechanics. It depends on the character of the wave function, and it is the one to
be identified with the operator

63=f';v.
1

4 See, for example, J. D Jackson, Classical Electrodynamics, John Wiley and Sons, Inc.
New York (1962), p. 408.
2 Volume II, Chapter 14, Secuion 14-1.

Fig. 21-2. The electric field outside
a solenoid with an increasing current.



21-4 The meaning of the wave function

When Schrodinger first discovered his equation he discovered the conservation
law of Eq. (21.9) as a consequence of his equation. But he imagined incorrectly
that P was the electric charge density of the electron and that J was the electric
current density, so he thought that the electrons interacted with the electromagnetic
field through these charges and currents. When he solved his equations for the
hydrogen atom and calculated ¢, he wasn’t calculating the probability of anything
—there were no amplitudes at that time—the interpretation was completely differ-
ent. The atomic nucleus was stationary but there were currents moving around;
the charges P and currents J would generate electromagnetic fields and the thing
would radiate ight. He soon found on doing a number of problems that it didn’t
work out quite right. It was at this point that Born made an essential contribution
to our ideas regarding quantum mechanics. It was Born who correctly (as far
as we know) interpreted the y of the Schrodinger equation in terms of a probabulity
amplitude—that very difficult 1dea that the square of the amplitude is not the
charge density but 1s only the probability per unit volume of finding an electron
there, and that when you do find the electron some place the entire charge is there.
That whole idea is due to Born.

The wave function ¢(r) for an electron in an atom does not, then, describe
a smeared-out electron with a smooth charge density. The electron is either here,
or there, or somewhere else, but wherever it is, it is a point charge. On the other
hand, think of a situation in which there are an enormous number of particles in
exactly the same state, a very large number of them with exactly the same wave
function. Then what? One of them is here and one of them is there, and the
probability of finding any one of them at a given place is proportional to y¢*.
But since there are so many particles, if I look in any volume dx dy dz I will
generally find a number close to yy* dx dy dz. So in a situation in which y is the
wave function for each of an enormous number of particles which are all in the
same state, y* can be interpreted as the density of particles. If, under these
circumstances, each particle carries the same charge ¢, we can, in fact, go further
and interpret y*¢ as the density of electricity. Normally, yy* is given the dimen-
stons of a probability density, then ¢ should be multiplied by ¢ to give the dimen-
sions of a charge density. For our present purposes we can put this constant
factor into ¢, and take yy* itself as the electric charge density. With this under-
standing, J (the current of probability 1 have calculated) becomes directly the
electric current density.

So in the situation in which we can have very many particles in exactly the
same state, there is possible a new physical interpretation of the wave functions.
The charge density and the electric current can be calculated directly from the
wave functions and the wave functions take on a physical meaning which extends
into classical, macroscopic situations.

Something similar can happen with neutral particles. When we have the
wave function of a single photon, it 1s the amplitude to find a photon somewhere.
Although we haven’t ever written it down there is an equation for the photon wave
function analogous to the Schrodinger equation for the electron. The photon
equation is just the same as Maxwell’s equations for the electromagnetic field,
and the wave function is the same as the vector potential 4. The wave function
turns out to be just the vector potential. The quantum physics is the same thing
as the classical physics because photons are noninteracting Bose particles and
many of them can be in the same state—as you know, they /ike to be in the same
state. The moment that you have billions in the same state (that is, in the same
electromagnetic wave), you can measure the wave function, which 1s the vector
potential, directly. Of course, 1t worked historically the other way. The first ob-
servations were on situations with many photons in the same state, and so we were
able to discover the correct equation for a single photon by observing directly
with our hands on a macroscopic level the nature of wave function.

Now the trouble with the electron is that you cannot put more than one in
the same state. Therefore, it was long believed that the wave function of the
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Schrodinger equation would never have a macroscopic representation analogous
to the macroscopic representation of the amplitude for photons. On the other
hand, it is now realized that the phenomena of superconductivity presents us with
just this situation.

21-5 Superconductivity

As you know, very many metals become superconducting below a certain
temperature "—the temperature is different for different metals. When you reduce
the temperature sufficiently the metals conduct electricity without any resistance
This phenomenon has been observed for a very large number of metals but not for
all, and the theory of this phenomenon has caused a great deal of difficulty. It
took a very long time to understand what was going on nside of superconductors,
and 1 will only describe enough of it for our present purposes. It turns out that
due to the interactions of the electrons with the vibrations of the atoms in the
lattice, there is a small net effective artraction between the electrons. The result
is that the electrons form together, if 1 may speak very qualitatively and crudely,
bound pairs.

Now you know that a single electron is a Fermi particle. But a bound pair
would act as a Bose particle, because if I exchange both electrons in a pair I change
the sign of the wave function twice, and that means that I don’t change anything.
A pair is a Bose particle.

The energy of pairring—that is, the net attraction—is very, very weak. Only
a tiny temperature 1s needed to throw the electrons apart by thermal agitation,
and convert them back to “normal” electrons. But when you make the tempera-
ture sufficiently low that they have to do their very best to get into the absolutely
lowest state ; then they do collect in pairs.

I don’t wish you to imagine that the pairs are really held together very closely
like a point particle. As a matter of fact, one of the great difficulties of under-
standing this phenomena originally was that that is not the way things are. The
two electrons which form the pair are really spread over a considerable distance;
and the mean distance between pairs 1s relatively smaller than the size of a single
pair. Several pairs are occupying the same space at the same time. Both the reason
why electrons 1n a metal form pairs and an estimate of the energy given up in
forming a pair have been a triumph of recent times. This fundamental point in the
theory of superconductivity was first explained in the theory of Bardeen, Cooper,
and Schrieffer,” but that 1s not the subject of this seminar. We will accept, however,
the idea that the electrons do, in some manner or other, work in pairs, that we
can think of these pairs as behaving more or less like particles, and that we can
therefore talk about the wave function for a “pair.”

Now the Schrodinger equation for the pair will be more or less like Eq. (21.3).
There will be one difference in that the charge g will be twice the charge of an elec-
tron. Also, we don’t know the inertia—or effective mass—for the pair in the crystal
lattice, so we don’t know what number to put in for m. Nor should we think that
if we go to very high frequencies (or short wavelengths), this 1s exactly the right
form, because the kinetic energy that corresponds to very rapidly varying wave
functions may be so great as to break up the pairs. At finite temperatures there
are always a few pairs which are broken up according to the usual Boltzmann
theory. The probability that a pair is broken is proportional to exp (— E,a.r/kT).
The electrons that are not bound in pairs are called “normal” electrons and will
move around in the crystal in the ordinary way. I will, however, consider only
the situation at essentially zero temperature—or, in any case, I will disregard the
complications produced by those electrons which are not in pairs.

% First discovered by Onnes in 1911; H. K. Onnes, Comm. Phys. Lab , Univ. Leyden,
Nos. 119, 120, 122 (1911). You will find a nice up-to-date discussion of the subject in
E. A. Lynton, Superconductivity, John Wiley and Sons, Inc., New York, 1962.

7 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).



Since electron pairs are bosons, when there are a lot of them in a given state
there is an especially large amplitude for other pairs to go to the same state. So
nearly all of the pairs will be locked down at the lowest energy 1n exactly the same
state—1t won’t be easy to get one of them into another state. There’s more ampl-
tude to go into the same state than into an unoccupied state by the famous factor
\/n, where n is the occupancy of the lowest state. So we would expect all the pairs
to be moving in the same state.

What then will our theory look like? I'll call ¢ the wave function of a pair
in the lowest energy state. However, since yy¢* is going to be proportional to the
charge density p, I can just as well write ¢ as the square root of the charge density
times some phase factor:

Ur) = p(r)e’®, (21.17)

where p and 6 are real functions of r. (Any complex function can, of course, be
written this way.) It’s clear what we mean when we talk about the charge density,
but what 1s the physical meaning of the phase 8 of the wave function? Well, let’s
see what happens if we substitute y(r) into Eq. (21.12), and express the current
density in terms of these new variables p and 6. It’s just a change of variables and
I won’t go through all the algebra, but it comes out

_ A q ) .
J~E<v0—%A o Q1.18)

Since both the current density and the charge density have a direct physical meaning
for the superconducting electron gas, both p and 6 are real things. The phase is
just as observable as p; it is a piece of the current density J. The absolute phase is
not observable, but if the gradient of the phase is known everywhere, the phase is
known except for a constant. You can define the phase at one point, and then the
phase everywhere is determined.

Incidentally, the equation for the current can be analyzed a little nicer, when
you think that the current density J is in fact the charge density times the velocity
of motion of the fluid of electrons, or pv. Equation (21.18) is then equivalent to

my = hve — gA. (21.19)

Notice that there are two pieces in the my-momentum; one is a contribution from
the vector potential, and the other, a contribution from the behavior of the
wave function. In other words, the quantity # V8 is just what we have called the
p-momentum,

21-6 The Meissner effect

Now we can describe some of the phenomena of superconductivity. First,
there is no electrical resistance. There’s no resistance because all the electrons are
collectively in the same state. In the ordinary flow of current you knock one
electron or the other out of the regular flow, gradually deteriorating the general
momentum. But here to get one electron away from what all the others are doing
is very hard because of the tendency of all Bose particles to go in the same state.
A current once started, just keeps on going forever.

It’s also easy to understand that if you have a piece of metal in the super-
conducting state and turn on a magnetic field which isn’t too strong (we won’t
go into the details of how strong), the magnetic field can’t penetrate the metal. If, as
you build up the magnetic field, any of it were to build up inside the metal, there
would be a rate of change of flux which would produce an electric field, and an
electric field would immediately generate a current which, by Lenz’s law, would
oppose the flux. Since all the electrons will move together, an infinitesimal electric
field will generate enough current to oppose completely any applied magnetic field.
So if you turn the field on after you've cooled a metal to the superconducting state,
it will be excluded.
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Even more interesting is a related phenomenon discovered experimentally
by Meissner.® If you have a piece of the metal at a high temperature (so that it is a
normal conductor) and establish a magnetic field through it, and then you lower
the temperature below the critical temperature (where the metal becomes a super-
conductor), the field is expelled. In other words, it starts up its own current—and
in just the right amount to push the field out.

We can see the reason for that in the equations, and 1'd like to explain how.
Suppose that we take a piece of superconducting material which is in one lump.
Then in a steady situation of any kind the divergence of the current must be zero
because there’s no place for it to go. It is convenient to choose to make the
divergence of 4 equal to zero. (I should explain why choosing this convention
doesn’t mean any loss of generality, but I don’t want to take the time.) Taking
the divergence of Eq. (21.18), then gives that the Laplacian of 6 is equal to zero.
One moment. What about the varnation of p? 1 forgot to mention an important
point. There is a background of positive charge in this metal due to the atomic
ions of the lattice. If the charge density p is uniform there is no net charge and no
electric field. If there would be any accumulation of electrons in one region the
charge wouldn’t be neutralized and there would be a terrific repulsion pushing the
electrons apart.f So in ordinary circumstances the charge density of the electrons
in the superconductor is almost perfectly uniform—I can take p as a constant.
Now the only way that V2§ can be zero everywhere inside the lump of metal is
for 6 to be a constant. And that means that there is no contribution to J from
p-momentum. Equation (21.18) then says that the current is proportional 1o p
times 4. So everywhere in a lump of superconducting material the current is
necessarily proportional to the vector potential:

J=—p % A (21.20)

Since p and ¢ have the same (negative) sign, and since p is a constant, I can set
pg/m = —(some constant); then

J = —(some constant)4. (21.21)

This equation was originally proposed by London and London? to explain the
experimental observations of superconductivity—long before the quantum me-
chanical origin of the effect was understood.

Now we can use Eq. (21.20) in the equations of electromagnetism to solve
for the fields. The vector potential is related to the current density by

V24 = — ?lcz 7 (1.22)

If I use Eq. (21.21) for J, I have

V24 = \%4, (21.23)
where A% 1s just a new constant;
A =p eogch' (21.24)

We can now try to solve this equation for 4 and see what happens in detail.
For example, in one dimension Eq. (21.23) has exponential solutions of the form
e™* and e*™* These solutions mean that the vector potential must decrease
exponentially as you go from the surface into the material. (It can’t increase

8 W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).

9 H. London and F. London, Proc. Roy. Soc (London) A149, 71 (1935); Physica 2,
341 (1935).

1 Actually if the electric field were too strong, pairs would be broken up and the
“normal” electrons created would move 1n to help neutralize any excess of positive charge.
Still, it takes energy to make these normal electrons, so the main point 1s that a nearly
uniform density p 1s highly favored energetically.
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(@)
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Fig 21-3  (a) A superconducting cyl-
inder 1s a magnetic field; (b) the magnetic
field B as a function of r.

because there would be a blow up.) If the piece of metal is very large compared
to 1/X, the field only penetrates to a thin layer at the surface—a layer about 1/\
in thickness. The entire remainder of the interior 1s free of field, as sketched in
Fig. 21-3. This is the explanation of the Meissner effect.

How big 1s the distance \? Well, remember that r,, the “electromagnetic
radius” of the electron (2.8 X 10~'%cm), is given by

Writing p as g.N, where N 1s the number of electrons per cubic centimeter, we have
A2 = 87Nrq. (21.25)

For a metal such as lead there are about 3 X 102% atoms per cm®, so 1f each one
contributed only one conduction electron, 1/\ would be about 2 X 10™°cm.
That gives you the order of magnitude

21-7 Flux quantization

The London equation (21.21) was proposed to account for the observed
facts of superconductivity including the Meissner effect. In recent times, however,
there have been some even more dramatic predictions. One prediction made by
London was so peculiar that nobody paid much attenfion to it until recently.
I will now discuss it. This time instead of taking a single lump, suppose we take
a ring whose thickness is large compared to 1/), and try to see what would happen
if we started with a magnetic field through the ring, then cooled it to the super-
conducting state, and afterward removed the original source of B. The sequence of
events 1s sketched in Fig 21-4. In the normal state there will be a field in the body
of the ring as sketched in part (a) of the figure. When the ring is made super-
conducting, the field 1s forced outside of the marerial (as we have just seen).
There will then be some flux through the hole of the ring as sketched in part (b).
If the external field is now removed, the lines of field going through the hole are
“trapped” as shown in part (c). The flux & through the center can’t decrease
because d®/dr must be equal to the line integral of E around the ring, which 1s
zero in a superconductor. As the external field is removed a super current starts
flowing around the ring to keep the flux through the ring a constant. (It’s the
old eddy-current idea, only with zero resistance.) These currents will, however,
all flow near the surface (down to a depth 1/}), as can be shown by the same kind
of analysis that I made for the solid block. These currents can keep the magnetic
field out of the body of the ring, and produce the permanently trapped magnetic
field as well.

Now, however, there 1s an essential difference, and our equations predict a
surprising effect. The argument I made above that 6 must be a constant in a solid
block does not apply for a ring, as you can see from the following arguments.

Well inside the body of the ring the current density J 1s zero; so Eq. (21.18)
gives

AvVEe = gA. (21.26)

Now consider what we get if we take the line integral of 4 around a curve T,
which goes around the ring near the center of its cross-section so that it never
gets near the surface, as drawn in Fig. 21-5. From Eq. (21.26),

h%ve-ds = q%A'(/s (21.27)
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Now you know that the line integral of A around any loop is equal to the flux
of B through the loop
f-A - ds
Equation (21.27) the becomes
f v - ds

The line integral of a gradient from one point to another (say from point I to point
2) is the difference of the values of the function at the two points. Namely,

I
&

8. (21.28)

Il
e

2
/ Ve-ds=02-01.
1

If we let the two end points 1 and 2 come together to make a closed loop you might
at first think that 6, would equal 6,, so that the integral in Eq. (21.28) would be
zero. That would be true for a closed loop in a simply-connected piece of super-
conductor, but it is not necessarily true for a ring-shaped piece. The only physical
requirement we can make is that there can be only one value of the wave function
Jfor each point. Whatever 6 does as you go around the ring, when you get back to
the starting point the 6 you get must give the same value for the wave function

V= \/’—)ezﬁ'

This will happen if 6 changes by 2mn, where n is any integer. So if we make one
complete turn around the ring the left-hand side of Eq. (21.27) must be # - 27n.
Using Eq. (21.28), I get that

2mwnh = q®. (21.29)

The trapped flux must always be an integer times 27h/q! If you would think of the
ring as a classical object with an ideally perfect (that is, infinite) conductivity,
you would think that whatever flux was initially found through it would just stay
there—any amount of flux at all could be trapped. But the quantum-mechanical
theory of superconductivity says that the flux can be zero, or 27h/q, or 4rh/q,
or 67h/q, and so on, but no value in between. It must be a multiple of a basic
quantum mechanical unit.

London!? predicted that the flux trapped by a superconducting ring would
be quantized and said that the possible values of the flux would be given by Eq.
(21.29) with g equal to the electronic charge. According to London the basic
unit of flux should be 27#/g., which is about 4 X 10~7 gauss = cm2. To visual-
ize such a flux, think of a tiny cylinder a tenth of a millimeter in diameter; the
magnetic field inside it when it contains this amount of flux is about one percent
of the earth’s magnetic field. It should be possible to observe such a flux by a
sensitive magnetic measurement.

In 1961 such a quantized flux was looked for and found by Deaver and
Fairbank!! at Stanford University and at about the same time by Doll and
Nabauer'2 in Germany.

In the experiment of Deaver and Fairbank, a tiny cylinder of superconductor
was made by electroplating a thin layer of tin on a one-centimeter length of No.
56 (1.3 X 1072 cm diameter) copper wire. The tin becomes superconducting
below 3.8°K, while the copper remains a normal metal. The wire was put in a
small controlled magnetic field, and the temperature reduced until the tin became
superconducting. Then the exeternal source of field was removed. You would

10 F. London, Superfluids; John Wiley and Sons, Inc., New York, 1950, Vol. I, p. 152
11 B, S. Deaver, Jr., and W. M. Fairbank, Phys. Rev. Letters 7, 43 (1961).
12 R. Doll and M. Nabauer, Phys. Rev. Lefters 1, 51 (1961).
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Fig. 21-4. A ring in a magretic
field: (a) in the normal state; (b) in the
superconducting state; (c) after the ex-
ternal field is removed.

Fig. 21-5. The curve T inside o
superconducting ring




expect this to generate a current by Lenz’s law so that the flux inside would not
change. The little cylinder should now have magnetic moment proportional to the
flux inside. The magnetic moment was measured by jiggling the wire up and down
(like the needle on a sewing machine, but at the rate of 100 cycles per second)
inside a pair of little coils at the ends of the tin cylinder. The induced voltage in
the coils was then a measure of the magnetic moment.

When the experiment was done by Deaver and Fairbank, they found that the
flux was quantized, but that the basic unit was only one-half as large as London
had predicted. Doll and Nabauer got the same result. At first this was quite mys-
terious,t but we now understand why it should be so. According to the Bardeen,
Cooper, and Schrieffer theory of superconductivity, the g which appears in Eq.
(21.29) is the charge of a pair of electrons and so is equal to 2g,. The basic flux
unit is

wh -7
Py = ’ = 2 X 1077 gauss-cm (21.30)
or one-half the amount predicted by London. Everything, now fits together, and
the measurements show the existence of the predicted purely quantum-mechanical
effect on a large scale.

21-8 The dynamics of superconductivity

The Meissner effect and the flux quantization are two confirmations of our
general ideas. Just for the sake of completeness I would like to show you what
the complete equations of a superconducting fluid would be from this point of
view—it is rather interesting. Up to this point I have only put the expression for
¥ into equations for charge density and current. If I put it into the complete
Schrodinger equation I get equations for p and 6. It should be interesting to see
what develops, because here we have a “fluid” of electron pairs with a charge
density p and a mysterious /—we can try to see what kind of equations we get for
such a “fluid”! So we substitute the wave function of Eq. (21.17) into the Schrd-
dinger equation (21.3) and remember that p and 6 are real functions of x, y, and
z. If we separate real and imaginary parts we obtain then two equations. To
write them in a shorter form I will—following Eq. (21.19)—write

LA PR A, (21.31)
m m

One of the equations I get is then

dp _
27 = Vv - pv. (21.32)
Since pv is first J, this is just the continuity equation once more. The other equation

I obtain tells how 8 varies; it is

8 m s L .
ho=— 50 +q¢—27"{;/l-)V(\/;)} (21.33)

Those who are thoroughly familiar with hydrodynamics (of which I'm sure few
of you are) will recognize this as the equation of motion for an electrically charged
fluid if we identify %6 as the ‘“‘velocity potential”—except that the last term, which
should be the energy of compression of the fluid, has a rather strange dependence
on the density p. In any case, the equation says that rate of change of the quantity
#6 is given by a kinetic energy term, 3mv?, plus a potential energy term, g¢, with
an additional term, containing the factor 42, which we could call a *“‘quantum
mechanical energy.” We have seen that inside a superconductor p 1s kept very

1 It has once been suggested by Onsager that this might happen (see F. London, Ref.
10), although no one else ever understood why.
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uniform by the electrostatic forces, so this term can almost certainly be neglected
in every practical application provided we have only one superconducting region.
If we have a boundary between two superconductors {or other circumstances in
which the value of p may change rapidly) this term can become important.

For those who are not so familiar with the equations of hydrodynamuics,
I can rewnite Eq. (21.33) in a form that makes the physics more apparent by using
Eq. (21.31) to express # in terms of v. Taking the gradient of the whole of Eq.
(21.33) and expressing V6 in terms of 4 and v by using (21.31), I get

w4 _ o) _ v 2 (Lwp).
3 = m AV~ v X (VXv)— WX VW Vo NG Vp
(21.34)
What does this equation mean? First, remember that
A4
—V¢ — 5 = E. (21.35)

Next, notice that if I take the curl of Eq. (21.19), I get

V><v=—;%V><A, (21.36)

since the curl of a gradient is always zero. But V X A is the magnetic field B,
so the first two terms can be written as

%(E+UXB).

Finally, you should understand that ov/d¢ stands for the rate of change of the
velocity of the fluid at a point. If you concentrate on a particular particle, its
acceleration is the fotal derivative of v (or, as it 1s sometimes called in fluid dy-
namics, the “comoving acceleration”), which is related to dv/dr by*?

dv
dt

= ‘;—‘t’ + @ VW (21.37)

comoving
This extra term also appears as the third term on the right side of Eq. (21.25).
Taking it to the left side, I can write Eq. (21.25) in the following way:

d?
dt

_ h2<l 2 /o
=g(E+vXB)— V- %V\/p- (21.38)

comoving 2
We also have from Eq. (21.36) that

vxv=—-218 (21.39)
m

These two equations are the equations of motion of the superconducting
electron fluid. The first equation is just Newton’s law for a charged fiuid in an
electromagnetic field. It says that the acceleration of each particle of the fluid
whose charge is ¢ comes from the ordinary Lorentz force g(E + v X B) plus an
additional force, which is the gradient of some mystical quantum mechanical
potential—a force which 1s not very big except at the junction between two super-
conductors. The second equation says that the fluid 1s “ideal”—the curl of v has
zero divergence (the divergence of B is always zero). That means that the velocity
can be expressed in terms of velocity potential. Ordinarily one writes that v X
v = O for an ideal fluid, but for an ideal charged fluud in a magnetic field, this gets
modified 1o Eq. (21.40).

So, Schrodinger’s equation for the electron pairs in a superconductor gives
us the equations of motion of an electrically charged ideal fluid. Superconductivity
is the same as the problem of the hydrodynamics of a charged liquid. If you want

13 See Volume II, Section 40-2.
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Fig. 21-6. Two superconductors sep-
arated by a thin insulator.

to solve any problem about superconductors you take these equations for the
fluid [or the equivalent pair, Egs. (21.32) and (21.33)], and combine them with
Maxwell’s equations to get the fields. (The charges and currents you use to get
the fields must, of course, include the ones from the superconductor as well as
from the external sources.)

Incidentally, I believe that Eq. (21.38) is not quite correct, but ought to have
an additional term involving the density. This new term does not depend on
quantum mechanics, but comes from the ordinary energy associated with varia-
tions of density. Just as in an ordinary fluid there should be a potential energy
density proportional to the square of the deviation of p from pg, the undisturbed
density (which is, here, also equal to the charge density of the crystal lattice).
Since there will be forces proportional to the gradient of this energy, there should
be another term in Eq. (21.38) of the form: (const) V(o — po)2. This term did
not appear from the analysis because it comes from the interactions between parti-
cles, which I neglected in using an independent-particle approximation. It i,
however, just the force I referred to when I made the qualitative statement that
electrostatic forces would tend to keep p nearly constant inside a superconductor.

21-9 The Josephson junction

1 would like to discuss next a very interesting situation that was noticed by
Josephson ' while analyzing what might happen at a junction between two super-
conductors. Suppose we have two superconductors which are connected by a
thin layer of insulating material as in Fig. 21-6. Such an arrangement is now
called a “Josephson junction.” If the insulating layer is thick, the electrons can’t
get through; but if the layer is thin enough, there can be an appreciable quantum
mechanical amplitude for electrons to jump across. This is just another example
of the quantum-mechanical penetration of a barrier. Josephson analyzed this
situation and discovered that a number of strange phenomenon should occur.

In order to analyze such a junction I'll call the amplitude to find an electron
on one side, ¥, and the amplitude to find it on the other, Y,. In the superconduct-
ing state the wave function, ¥ is the common wave function of all the electrons
on one side, and ¢ is the corresponding function on the other side. 1 could do
this problem for different kinds of superconductors, but let us take a very simple
situation in which the material is the same on both sides so that the junction is
symmetrical and simple. Also, for a moment let there be no magnetic field. Then
the two amplitudes should be related in the following way:

i 20— U+ Kb,
i % = Uy + Ky1.

The constant K is a characteristic of the junction. If K were zero, these two
equations would just describe the lowest energy state—with energy U—of each
superconductor. But there is coupling between the two sides by the amplitude K
that there may be leakage from one side to the other. (It is just the “flip-flop”
amplitude of a two-state system.) If the two sides are identical, U; would equal
U, and I could just subtract them off. But now suppose that we connect the two
superconducting regions to the two terminals of a battery so that there is a po-
tential difference V across the junction. Then U; — U, = gV. 1 can, for con-
venience, define the zero of energy to be halfway between, then the two equations
are

., 0
i =yt Ky,
(21.40)
LW qV
ih i 7302 + Ky,.

14 B, D. Josephson, Physics Letrers 1, 251 (1962).
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These are the standard equations for two quantum mechanical states coupled
together. This time, let’s analyze these equations in another way. Let’s make the

substitutions
V1 = Vpe, 2141
‘IJZ =V pZsz! .

where ¢, and 8, are the phases on the two sides of the junction and p, and p,
are the density of electrons at those two points. Remember that in actual practice
p1 and p, are almost exactly the same and are equal to pg, the normal density of
electrons in the superconducting material. Now if you substitute these equations
for ¥ and ¥ into (21.40), you get four equations by equating the real and imaginary
parts in each case. Letting (8> — 6;) = 8§, for short, the result is

2 .
+ 7 K+/p2py sin §,

p1 =
(21.42)
2 .
p2 = — 3 KV papysin 3,
6, = +§1 22 cos s —%’
p1 (21.43)
_ 4 K Jo 4
92—+—,; p—2COSB+27'
The first two equations say that g; = —pe. “But,” you say, “they must

both be zero 1f p; and p, are both constant and equal to zero.” Not quite. These
equations are not the whole story. They say what g, and g, would be if there
were no extra electric forces due to an unbalance between the electron fluid and
the background of positive ions. They tell how the densities would start to change,
and therefore describe the kind of current that would begin to flow. This current
from side 1 to side 2 would be just g;(or —g3), or

J = .255 /P13 sin 5. (21.44)

Such a current would soon charge up side 2, except that we have forgotten that
the two sides are connected by wires to the battery. The current that flows will
not charge up region 2 (or discharge region 1) because currents will flow to keep
the potential constant. These currents from the battery have not been included
in our equations. When they are included, p; and p, do not in fact change, but
the current across the junction is still given by Eq. (21.44).

Since p; and p, do remain constant and equal to py, let’s set 2Kpo/h = Jy,

and write
J = Jpsin 6. (21.45)

Jo, like K, is then a number which is a characteristic of the particular junction.
The other pair of equations (21.43) tells us about 8, and 6. We are interested
in the difference 8 = 6, — 6, to use Eq. (21.45); what we get is

b =0, — 6, = %/ (21.46)
That means that we can write
8(1) = o0 + % f V() dt, (21.47)

where 8 is the value of 8 at 1 = 0. Remember also that g is the charge of a pair,
namely, ¢ = 2¢.. In Eqgs. (21.45) and (21.47) we have an important result, the
general theory of the Josephson junction.
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Now what are the consequences? First, put on a dc voltage. If you put ona
dc voltage, V, the argument of the sine becomes (8o + (g/#)V 1) Since #is a
small number (compared to ordinary voltage and times), the sine oscillates rather
rapidly and the net current is nothing. (In practice, since the temperature 1s not
zero, you would get a small current due to the conduction by “normal” electrons.)
On the other hand if you have zero voltage across the junction, you can get a cur-
rent! With no voltage the current can be any amount between +4-J, and —J,
(depending on the value of §,). But try to put a voltage across 1t and the current
goes to zero. This strange behavior has recently been observed experimentally, '3

There is another way of getting a current—by applying a voltage at a very
high frequency in addition to a dc voltage. Let

V="V,+ vcoswt,
where v << V. Then 8(2) 1s

) + % V(jf + g i—;sin wl.

Now for Ax small,
sin (x + Ax) ~ sin x 4+ Axcos X.

Using this approximatton for sin §, 1 get
- : 9 a2 4 .
J=Jo [sm (60 + 5 Vot> + 3 o sin wt cos (6(, + 5 Vm)]

The first term is zero on the average, but the second term is not tf

There should be a current if the ac voltage has just this frequency. Shapiro®
claims to have observed such a resonance effect.

If you look up papers on the subject you will find that they often write the
formula for the current as

J = J() sin (5() + g% /A . ds)a (2148)

where the integral is to be taken across the junction. The reason for this 1s that
when there’s a vector potential across the junction the flip-flop amplitude is
modified in phase in the way that we explained earlier If you chase that extra
phase through, it comes out as given above.

Finally, I would like to describe a very dramatic and interesting experiment
which has recently been made on the interference of the currents from each of
two junctions. In quantum mechanics we’re used to the interference between
amplitudes from two different shits. Now we’re going to do the interference be-
tween two junctions caused by the difference in the phase of the arrival of the
currents through two different paths. In Fig. 21-7, I show two different junctions,
“a” and “b”, connected in parallel. The ends, P and Q, are connected to our elec-
trical intruments which measure any current flow. The external current, Jiota1,
will be the sum of the currents through the two junctions. Let J, and J,, be the
currents through the two junctions, and let their phases be 3, and 8,. Now the
phase difference of the wave functions between P and Q must be the same whether
you go on one route or the other. Along the route through junction “a”, the phase
difference between P and Q is 8, plus the line integral of the vector potential along
the upper route:

APhasep g = 6, + ¢ A ds. (21.49)

h upper

15 P, W. Anderson and J. M. Rowell, Phys Rev Letters 10, 230 (1963).
16 S, Shapiro, Phys. Rev. Letters 11, 80 (1963).
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Why? Because the phase 6 1s related to 4 by Eq. (21.26). If you integrate that
equation along some path, the left-hand side gives the phase change, which 1s then
just proportional to the Iine integral of A, as we have written here. The phase
change along the lower route can be written similarly

APhasep_q = oy + 2de /1 A-ds. (21.50)

These two must be equal; and if 1 subtract them I get that the difference of the
deltas must be the line integral of A around the circuit:

_ 24
oy — Bn = —h— 1‘14 ds.
Here the 1ntegral is around the closed loop T’ of Fig. 21-7 which circles through
both junctions. The integral over A4 is the magnetic flux ¢ through the loop. So
the two &’s are going to differ by 2¢./# times the magnetic flux & which passes
between the two branches of the circuit:

29,
B — b = Sl @ (21.51)
1 dan control this phase difference by changing the magnetic field on the circuit,
so I can adjust the differences in phases and see whether or not the total current
that flows through the two junctions shows any interference of the two parts.
The total current will be the sum of J, and Ji,. For convenience, I will write

b=t +%a, 5 =8 —Te

Then,
Jiotal = Jo {sm (60 + % <1>) + sin (60 — % <I>)}

Jo i 8o cos ‘-’;i”~ (21.52)

Now we don’t know anything about §,, and nature can adjust that anyway
she wants depending on the circumstances. In particular, it will depend on the
external voltage we apply to the junction. No matter what we do, however, siné,,
can never get bigger than 1. So the maximum current for any given ® 1s given by

g2
#

This maximum current will vary with ® and will 1tself have maxima whenever

cos

Jumx = JO

o=,
qe
with # some integer. That is to say that the current takes on its maximum values
where the flux linkage has just those quantized values we found in Eq. (21.30)'
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Fig. 21-8. A recording of the current
through a pair of Josephson junctions as a
function of the magnetic field in the region
between the two junctions (see Fig. 21-7).
[This recording was provided by R. C.
Jaklevic, J. Lambe, A. H. Silver, and J. E.
Mercereau of the Scientific Laboratory,
Ford Motor Company ]
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The Josephson current through a double junction was recently measured'”
as a function of the magnetic field in the area between the junctions. The results
are shown in Fig. 21-8. There 1s a general background of current from various
effects we have neglected, but the rapid oscillations of the current with changes in
the magnetic field are due to the interference term cos g.®/% of Eq. (21.52).

One of the intriguing questions about quantum mechanics is the question of
whether the vector potential exists 1n a place where there's no field.!® This experi-
ment I have just described has also been done with a tiny solenoid between the
two junctions so that the only significant magnetic B field is inside the solenoid
and a negligible amount 1s on the superconducting wires themselves. Yet it is
reported that the amount of current depends oscillatorily on the flux of magnetic
field 1nside that solenoid even though that field never touches the wires—another
demonstration of the *“‘physical reality” of the vector potential.!?

I don’t know what will come next. But look what can be done. First, notice
that the interference between two junctions can be used to make a sensitive mag-
netometer. If a pair of junctions is made with an enclosed area of, say, 1 mm?,
the maxima in the curve of Fig. 21-8 would be separated by 2 X 107" gauss. It
1s certainly possible to tell when you are 1/10 of the way between two peaks; so
it should be possible to use such a junction to measure magnetic fields as small as
2 X 1077 gauss—or to measure larger fields to such a precision. One should be
able to go even farther. Suppose for example we put a set of 10 or 20 junctions
close together and equally spaced. Then we can have the interference between
10 or 20 shits and as we change the magnetic field we will get very sharp maxima
and minima. Instead of a 2-shit interference we can have a 20- or perhaps even a
100-slit interferometer for measuring the magnetic field. Perhaps we can predict
that the measurement of magnetic fields will—by using the effects of quantum-
mechanical interference—eventually become almost as precise as the measurement
of wavelength of light.

These then are some illustrations of things that are happening in modern
times—the transistor, the laser, and now these junctions, whose ultimate practical
applications are still not known. The quantum mechanics which was discovered
1n 1926 has had nearly 40 years of development, and rather suddenly 1t has begun
to be exploited in many practical and real ways. We are really getting control of
nature on a very delicate and beautiful level.

I am sorry to say, gentlemen, that to participate in this adventure 1t is ab-
solutely imperative that you learn quantum mechanics as soon as possible. It was
our hope that in this course we would find a way to make comprehensible to you
at the earliest possible moment the mysteries of this part of physics

17 Jaklevic, Lambe, Silver, and Mercereau, Phys. Rev Letrers 12, 159 (1964).
18 Jaklevic, Lambe, Silva, and Mercereau, Phys Rev. Letters 12, 274 (1964).
19 See Volume 11, Chapter 15, Section 15-5.
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Feynman’s Epilogue

Well, I've been talking to you for two years and now I'm going to quit. In
some ways I would like to apologize, and other ways not. I hope—in fact, I know—
that two or three dozen of you have been able to follow everything with great
excitement, and have had a good time with it. But I also know that “the powers of
mstruction are of very little efficacy except in those happy circumstances in which
they are practically superfluous.” So, for the two or three dozen who have under-
stood everything, may I say I have done nothing but shown you the things. For
the others, if I have made you hate the subject, I'm sorry. I never taught elementary
physics before, and I apologize. I just hope that I haven’t caused a serious trouble
to you, and that you do not leave this exciting business. I hope that someone else
can teach it to you in a way that doesn’t give you indigestion, and that you will
find someday that, after all, it isn’t as horrible as it looks.

Finally, may I add that the main purpose of my teaching has not been to
prepare you for some examination—it was not even to prepare you to serve in-
dustry or the military. I wanted most to give you some appreciation of the wonder-
ful world and the physicist’s way of looking at it, which, I believe, is a major part
of the true culture of modern times. (There are probably professors of other sub-
jects who would object, but I believe that they are completely wrong.)

Perhaps you will not only have some appreciation of this culture; it is even
possible that you may want to join in the greatest adventure that the human mind
has ever begun.
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