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The Independent Particle Approximation

15-1 Spin waves

In Chapter 13 we worked out the theory for the propagation of an electron or
of some other “particle,” such as an atomic excitation, through a crystal lattice.
In the last chapter we applied the theory to semiconductors. But when we talked
about situations in which there are many electrons we disregarded any interactions
between them. To do this is of course only an approximation. In this chapter
we will discuss further the idea that you can disregard the interaction between the
electrons. We will also use the opportunity to show you some more applications
of the theory of the propagation of particles. Since we will generally continue to
disregard the interactions between particles, there is very little really new in this
chapter except for the new applications. The first example to be considered is,
however, one in which it is possible to write down quite exactly the correct equa-
tions when there is more than one “particle” present. From them we will be able
to see how the approximation of disregarding the interactions is made. We will
not, though, analyze the problem very carefully.

As our first example we will consider a “spin wave” in a ferromagnetic crystal.
We have discussed the theory of ferromagnetism in Chapter 36 of Volume II.
At zero temperature all the electron spins that contribute to the magnetism in the
body of a ferromagnetic crystal are parallel. There is an interaction energy between
the spins, which is lowest when all the spins are down. At any nonzero temperature,
however, there is some chance that some of the spins are turned over. We calculated
the probability in an approximate manner in Chapter 36. This time we will describe
the quantum mechanical theory—so you will see what you would have to do if you
wanted to solve the problem more exactly. (We will still make some 1dealizations
by assuming that the electrons are localized at the atoms and that the spins interact
only with neighboring spins.)

We consider a model in which the electrons at each atom are all paired except
one, so that all of the magnetic effects come from one spin-% electron per atom.
Further, we imagine that these electrons are localized at the atomic sites in the
lattice. The model corresponds roughly to metallic nickel.

We also assume that there 1s an interaction between any two adjacent spinning
electrons which gives a term in the energy of the system

E=—> Ko, o, 15.1)
1, 7

where ¢’s represent the spins and the summation is over all adjacent pairs of
electrons. We have already discussed this kind of interaction energy when we
considered the hyperfine splitting of hydrogen due to the interaction of the mag-
netic moments of the electron and proton in a hydrogen atom. We expressed it
then as Ao, - 6,. Now, for a given pair, say the electrons at atom 4 and at atom 5,
the Hamiltonian would be — Ko, - a5. We have a term for each such pair, and
the Hamiltonian is (as you would expect for classical energies) the sum of these
terms for each interacting pair. The energy is written with the factor — K so that
a positive K will correspond to ferromagnetism—that is, the lowest energy results
when adjacent spins are parallel. In a real crystal, there may be other terms which
are the interactions of next nearest neighbors, and so on, but we don’t need to con-

sider such complications at this stage.
With the Hamiltonian of Eq. (15.1) we have a complete description of the
ferromagnet—within our approximation—and the properties of the magnetization
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should come out. We should also be able to calculate the thermodynamic proper-
ties due to the magnetization. If we can find all the energy levels, the properties
of the crystal at a temperature T can be found from the principle that the prob-
ability that a system will be found in a given state of energy E is proportional to
e~ EI*T | This problem has never been completely solved.

We will show some of the problems by taking a simple example in which all
the atoms are in a line—a one-dimensional lattice. You can easily extend the ideas
to three dimensions. At each atomic location there is an electron which has two
possible states, either spin up or spin down, and the whole system is described by
telling how all of the spins are arranged. We take the Hamiltonian of the system
to be the operator of the interaction energy. Interpreting the spin vectors of Eq.
(15.1) as the sigma-operators—or the sigma-matrices—we write for the linear lattice

A . .
A=) - 5 8n Gur. (15.2)

In this equation we have written the constant as 4/2 for convenience (so that some
of the later equations will be exactly the same as the ones in Chapter 13).

Now what is the lowest state of this system? The state of lowest energy is
the one in which all the spins are parallel—let’s say, all up.f We can write this
state as |-+ + 4+ + + -+ -), or | gnd) for the “ground,” or lowest, state. It’s
easy to figure out the energy for this state. One way is to write out all the vector
sigmas in terms of &, ,, and &,, and work through carefully what each term of
the Hamiltonian does to the ground state, and then add the results. We can,
however, also use a good short cut. We saw in Section 12-2, that &, - &, could
be written in terms of the Pauli spin exchange operator like this:

é,-6, = QP — 1, (15.3)

where the operator PP ** interchanges the spins of the jth and jth electrons.
With this substitution the Hamiltonian becomes

H=—-43 080~ (154)

It is now easy to work out what happens to different states. For instance if 7 and j
are both up, then exchanging the spins leaves everything unchanged, so P,, acting
on the state just gives the same state back, and is equivalent to multiplying by +1.
The expression (P,, — 1) is just equal to one-half. (From now on we will leave
off the descriptive superscript on the P.)

For the ground state all spins are up; so if you exchange a particular pair of
spins, you get back the original state. The ground state is a stationary state. If
you operate on it with the Hamiltonian you get the same state again multiplied
by a sum of terms, —(A4/2) for each pair of spins. That is, the energy of the system
in the ground state is —A4/2 per atom

Next we would like to look at the energies of some of the excited states. It
will be convenient to measure the energies with respect to the ground state—that
is, to choose the ground state as our zero of energy. We can do that by adding the
energy A/2 to each term in the Hamiltonian. That just changes the “1” in Eq.
(15.4) to “1.” Our new Hamiltonian is

-~

= =AY Puppr — D). (15.5)

With this Hamiltonian the energy of the lowest state is zero; the spin exchange
operator is equivalent to multiplying by unity (for the ground state) which is
cancelled by the “1’* in each term.

+ The ground state here is really “degenerate”; there are other states with the same
energy—for example, all spins down, or all in any other direction. The slightest external
field in the z-direction will give a different energy to all these states, and the one we have
chosen will be the true ground state.
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For describing states other than the ground state we will need a suitable set
of base states. One convenient approach is to group the states according to whether
one electron has spin down, or two electrons have spin down, and so on. There
are, of course, many states with one spin down. The down spin could be at atom
“4,” or at atom “‘5,” or at atom “6,” ... We can, in fact, choose just such states
for our base states. We could write them this way: |4), |5), 16),... It will,
however, be more convenient later if we label the “odd atom”—the one with the
down-spinning electron—by its coordinate x. That is, we’ll define the state | x5)
to be one with all the electrons spinning up except for the one on the atom at x3,
which has a down-spinning electron (see Fig. 15-1). In general, | x,) is the state
with one down spin that is located at the coordinate x, of the nth atom.

What is the action of the Hamiltonian (15.5) on the state | x5)? One term of
the Hamiltonian is say — 4(£; s — 1). The operator P, 5 exchanges the two spins
of the adjacent atoms 7, 8. But in the state | x5) these are both up, and nothing
happens: P; g is equivalent to multiplying by 1:

Py g|xs) = | xs).
It follows that
(P7,8 - 1)|x5) = 0.

Thus all the terms of the Hamiltonian give zero—except those involving atom 5,
of course. On the state | 5), the operation P, 5 exchanges the spin of atom 4 (up)
and atom 5 (down). The result is the state with all spins up except the atom at 4.
That is

Py s|xs) = | xa)
In the same way

Ps.e | x5) = | xe).

Hence, the only terms of the Hamiltonian which survive are —A(P4 5 — 1)
and —A(Ps s — 1). Acting on | x5) they produce —A|x4) + 4|x5) and
—A|xg) + A| xs5), respectively. The result is

Hlxs)= =AY Cung1 — 1] xs) = —A{ x6) + | xs) — 2| x5)}.  (15.6)

When the Hamiltonian acts on state | x5) it gives rise to some amplitude to be
in states | x4) and | xg). That just means that there is a certain amplitude to have
the down spin jump over to the next atom. So because of the interaction between
the spins, if we begin with one spin down, then there is some probability that at a
later time another one will be down instead. Operating on the general state | x,),
the Hamiltonian gives

H|xp) = =A{l xps1) + | Xa1) = 2| xa)} (15.7)

Notice particularly that if we take a complete set of states with only one spin
down, they will only be mixed among themselves. The Hamiltonian will never
mix these states with others that have more spins down. So long as you only ex-
change spins you never change the total number of down spins.

It will be convenient to use the matrix notation for the Hamiltonian, say
H,m = (x, | A| xn); Eq. (15.7) is equivalent to

H,, = 4;
Hpny1r = Hypo1 = —4; (15.8)
H,,=0  for |[n—m|>1
Now what are the energy levels for states with one spin down? As usual we

let C,, be the amplitude that some state | y) is in the state | x,,). If | ¢)is to be a
definite energy state, all the C,’s must vary with time in the same way, namely,

C, = ae*EU%, (15.9)
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We can put this trial solution into our usual Hamiltonian equation

dc,
4 _‘(FL = Z HnmC:m (15 IO)
using Eq (15.8) for the matrix elements. Of course we get an infinite number of
equations, but they can all be written as

Ean = 2Aan - Aan_l - Aa"+1 (1511)

We have again exactly the same problem we worked out in Chapter 13, except that
where we had E, we now have 24. The solutions correspond to amphtudes C,
(the down-spin amplitude) which propagate along the lattice with a propagation
constant k and an energy

E = 24(1 — cos kb), (15.12)

where b is the lattice constant.

The definite energy solutions correspond to “waves™ of down spin—called
“spin waves.,” And for each wavelength there is a corresponding energy. For
large wavelengths (small k) this energy varies as

E = Ab%k*. (15.13)

Just as before, we can consider a localized wave packet (containing, however,
only long wavelengths) which corresponds to a spin-down electron in one part of
the lattice. This down spin will behave like a “particle.”” Because its energy is
related to k by (15.13) the **particle” will have an effective mass:

h2

Meg =

These “particles” are sometimes called “magnons.”

15-2 Two spin waves

Now we would like to discuss what happens if there are fwo down spins.
Again we pick a set of base states. We’ll choose states in which there are down
spins at two atomic locations, such as the state shown in Fig. 15-2. We can label
such a state by the x-coordinates of the two sites with down spins. The one shown
can be called | x5, x5). In general the base states are | x,, x,,)—a doubly nfinite
set! In this system of description, the state | x,, x9) and the state | xy, x4) are
exactly the same state, because each simply says that there is a down spin at 4 and
one at 9; there 1s no meaning to the order. Furthermore, the state | x4, x4) has
no meaning, there 1sn’t such a thing. We can describe any state | y) by giving the
amplitudes to be in each of the base states. Thus C,, , = (X, X, | ¢) now means
the amplitude for a system 1n the state | ) to be 1n a state in which both the mth
and nth atoms have a down spin. The complications which now arise are not
complications of ideas—they are merely complexities in bookkeeping. (One of the
complexities of quantum mechanics is just the bookkeeping. With more and
more down spins, the notation becomes more and more elaborate with lots of
indices and the equations always look very horrifying, but the 1deas are not neces-
sarily more complicated than in the simplest case.)

The equations of motion of the spin system are the differential equations for
the C,, . They are

an m
7 E (Hnm.,)C,). (15.15)
)

Suppose we want to find the stationary states. As usual, the derivatives with re-
spect to time become E times the amplitudes and the C,, ,, can be replaced by the
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coefficients a., ». Next we have to work out carefully the effect of H on a state
with spins m and n down. It is not hard to figure out. Suppose for a moment
that m and n are far enough apart so that we don’t have to worry about the obvious
trouble. The operation of exchange at the location x, will move the down spin
either to the (n + 1) or (n — 1) atom, and so there’s an amplitude that the
present state has come from the state | x,,, x,4,) and also an amplitude that it
has come from the state | x,,, x,_1). Or it may have been the other spin that
moved; so there’s a certain amplitude that C,,,, is fed from C,, 4, or from
Cm—1.n These effects should all be equal. The final result for the Hamiltonian
equation on Cy, ,, is

Eam.n = —A(am+l,n + 10 + Amn41 + am,n—l) + 4Aam,n- (15.16)

This equation is correct except in two situations. If m = n there is no equation
atall, and if m = n = 1, then two of the terms in Eq. (15.16) should be missing.
We are going to disregard these exceptions. We simply ignore the fact that some
few of these equations are slightly altered. After all, the crystal is supposed to be
infinite, and we have an infinite number of terms; neglecting a few might not
matter much. So for a first rough approximation let’s forget about the altered
equations. In other words, we assume that Eq. (15.16) is true for all m and
n, even for m and n next to each other. This is the essential part of our approxi-
mation.

Then the solution is not hard to find. We get immediately

Con = Appe B (15.17)
with
A = (const.) e*F17meF2en, (15.18)
where
E =44 — 2Acos kb — 2A cos kqb. (15.19)

Think for a moment what would happen if we had two independent, single
spin waves (as in the previous section) corresponding to k¥ = k; and k = k;
they would have energies, from Eq. (15.12), of

€ = (2A — 2A cos klb)
and
€3 = (24 — 24 cos kgb).

Notice that the energy E in Eq. (15.19) is just their sum,
E = e(ky) + e(ks). (15.20)

In other words we can think of our solution in this way. There are two particles—
that is, two spin waves. One of them has a momentum described by k;, the other
by k», and the energy of the system is the sum of the energies of the two objects.
The two particles act completely independently. That’s all there is to it.

Of course we have made some approximations, but we do not wish to discuss
the precision of our answer at this point. However, you might guess that in a
reasonable size crystal with billions of atoms—and, therefore, billions of terms in
the Hamiltonian—Ileaving out a few terms wouldn’t make much of an error.
If we had so many down spins that there was an appreciable density, then we would
certainly have to worry about the corrections.

[Interestingly enough, an exact solution can be written down if there are just
the rwo down spins. The result 1s not particularly important. But 1t 1s interesting
that the equations can be solved exactly for this case. The solution is:

A = expt™ @ tmlgin k| x, — x, |, (15.21)

with the energy

F =44 — 2Acos kb — 24 cos kb,



and with the wave numbers k. and k related to k; and k, by
ki =k, — k, ko = k. + k. (15.22)

This solution includes the “interaction” of the two spins. It describes the fact
that when the spins come together there is a certain chance of scattering. The
spins act very much like particles with an interaction. But the detailed theory of
their scattering goes beyond what we want to talk about here.]

15-3 Independent particles

In the last section we wrote down a Hamiltonian, Eq. (15.15), for a two-
particle system. Then using an approximation which is equivalent to neglecting
any “interaction” of the two particles, we found the stationary states described
by Egs. (15.17) and (15.18). This state is just the product of two single-particle
states. The solution we have given for a,,, in Eq. (15.18) is, however, really not
satisfactory. We have very carefully pointed out earlier that the state | xo, x4)
is not a different state from | x4, xg)—the order of x,, and x, has no significance.
In general, the algebraic expression for the amplitude C,, , must be unchanged if
we interchange the values of x,, and x,, since that doesn’t change the state. Either
way, it should represent the amplitude to find a down spin at x,, and a down spin
at x,. But notice that (15.18) is not symmetric in x,, and x,—since k; and kj
can in general be different.

The trouble is that we have not forced our solution of Eq. (15.15) to satisfy
this additional condition. Fortunately it is easy to fix things up. Notice first that
a solution of the Hamiltonian equation just as good as (15.18) is

A = Ke'2mmethin, (15.23)

It even has the same energy we got for (15.18). Any linear combination of (15.15)
and (15.23) is also a good solution, and has an energy still given by Eq. (15.19).
The solution we should have chosen—because of our symmetry requirement—is
just the sum of (15.15) and (15.23):

Apm = K[eiklxmeikgxn + eikzxmeik]::n]. (15.24)

Now, given any k; and k, the amplitude C,, , is independent of which way we
put x,, and x,—if we should happen to define x,, and x, reversed we get the same
amplitude. Our interpretation of Eq. (15.24) in terms of “magnons” must also be
different. We can no longer say that the equation represents one particle with wave
number k, and a second particle with wave number k,. The amplitude (15.24)
represents one state with two particles (magnons). The state is characterized by
the two wave numbers k; and k,. Our solution looks like a compound state of
one particle with the momentum p; = #/k, and another particle with the mo-
mentum p, = #/k,, but in our state we can’t say which particle is which.

By now, this discussion should remind you of Chapter 4 and our story of
identical particles. We have just been showing that the particles of the spin waves—
the magnons—behave like identical Bose particles. All amplitudes must be sym-
metric in the coordinates of the two particles—which is the same as saying that
if we “interchange the two particles,” we get back the same amplitude and with
the same sign. But, you may be thinking, why did we choose to add the two terms
in making Eq. (15.24). Why not subtract? With a minus sign, interchanging
X and x, would just change the sign of a,,, which doesn’t matter. But inter-
changing x,, and x, doesn’t change anything—all the electrons of the crystal are
exactly where they were before, so there is no reason for even the sign of the
amplitude to change. The magnons will behave like Bose particles.t

t In general, the quasi particles of the kind we are discussing may act like either Bose
particles or Fermi particles, and as for free particles, the particles with integral spin are
bosons and those with half-integral spins are fermions. The “magnon” stands for a spin-up
electron turned over. The change in spin is one. The magnon has an integral spin, and
is a boson.
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The main points of this discussion have been twofold: First, to show you
something about spin waves, and, second, to demonstrate a state whose amplitude
is a product of two amplitudes, and whose energy is the sum of the energies corre-
sponding to the two amplitudes. For independent particles the amplitude is the
product and the energy is the sum. You can easily see why the energy is the sum.
The energy is the coefficient of 7 in an imaginary exponential—it is proportional
to the frequency. If two objects are doing something, one of them with the ampli-
tude e *E1!/" and the other with the amplitude e~F2¢" and if the amplitude
for the two things to happen together is the product of the amplitudes for each,
then there is a single frequency in the product which is the sum of the two fre-
quencies. The energy corresponding to the amplitude product is the sum of the two
energies.

We have gone through a rather long-winded argument to tell you a simple
thing. When you don’t take into account any interaction between particles, you
can think of each particle independently. They can individually exist in the various
different states they would have alone, and they will each contribute the energy
they would have had if they were alone. However, you must remember that if they
are identical particles, they may behave either as Bose or as Fermi particles de-
pending upon the problem. Two extra electrons added to a crystal, for instance,
would have to behave like Fermi particles. When the positions of two electrons
are interchanged, the amplitude must reverse sign. In the equation corresponding
to Eq. (15.24) there would have to be a minus sign between the two terms on the
right. As a consequence, two Fermi particles cannot be in exactly the same con-
dition—with equal spins and equal k’s. The amplitude for this state is zero.

15-4 The benzene molecule

Although quantum mechanics provides the basic laws that determine the
structures of molecules, these laws can be applied exactly only to the most simple
compounds. The chemists have, therefore, worked out various approximate
methods for calculating some of the properties of complicated molecules. We
would now like to show you how the independent particle approximation is used
by the organic chemists. We begin with the benzene molecule.

We discussed the benzene molecule from another point of view in Chapter 10.
There we took an approximate picture of the molecule as a two-state system,
with the two base states shown in Fig.15-3. There is a ring of six carbons with a
hydrogen bonded to the carbon at each location. With the conventional picture
of valence bonds it is necessary to assume double bonds between half of the carbon
atoms, and in the lowest energy condition there are the two possibilities shown in
the figure. There are also other, higher-energy states. When we discussed benzene
in Chapter 10, we just took the two states and forgot all the rest. We found that
the ground-state energy of the molecule was not the energy of one of the states in
the figure, but was lower than that by an amount proportional to the amplitude
to flip from one of these states to the other.

Now we’re going to look at the same molecule from a completely different
point of view—using a different kind of approximation. The two points of view
will give us different answers, but if we improve either approximation it should
lead to the truth, a valid description of benzene. However, if we don’t bother to
improve them, which is of course the usual situation, then you should not be
surprised if the two descriptions do not agree exactly. We shall at least show that
also with the new point-of-view the lowest energy of the benzene molecule is
lower than either of the three-bond structures of Fig. 15-3.

Now we want to use the following picture. Suppose we imagine the six
carbon atoms of a benzene molecule connected only by single bonds as in Fig.
15-4. We have removed six electrons—since a bond stands for a pair of electrons
—s0 we have a six-times ionized benzene molecule. Now we will consider what
happens when we put back the six electrons one at a time, imagining that each
one can run freely around the ring. We assume also that all the bonds shown in
Fig. 15-4 are satisfied, and don’t need to be considered further.
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Fig. 15-5. The ethylene molecule.

Eot+A

Eo _________

Eo-A

Fig. 15-6. The possible energy levels
for the “extra” electrons in the ethylene
molecule.

Eo+A

Eoh [
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spin up, one spin down) can occupy the
lowest energy level.

What happens when we put one electron back into the molecular ion? It
might, of course, be located in any one of the six positions around the ring—
corresponding to six base states. It would also have a certain amplitude, say A, to
go from one position to the next. If we analyze the stationary states, there would
be certain possible energy levels. That’s only for one electron.

Next put a second electron in. And now we make the most ridiculous ap-
proximation that you can think of—rthar what one electron does is not affected by
what the other is doing. Of course they really will interact; they repel each other
through the Coulomb force, and furthermore when they are both at the same site,
they must have considerably different energy than twice the energy for one being
there. Certainly the approximation of independent particles is not legitimate
when there are only six sites—particularly when we want to put in six electrons.
Nevertheless the organic chemists have been able to learn a lot by making this
kind of an approximation.

Before we work out the benzene molecule in detail, let’s consider a simpler
example—the ethylene molecule which contains just two carbon atoms with two
hydrogen atoms on either side as shown in Fig. 15-5. This molecule has one “extra”
bond involving two electrons between the two carbon atoms. Now remove one
of these electrons; what do we have? We can look at it as a two-state system—the
remaining electron can be at one carbon or the other. We can analyze it as a two-
state system. The possible energies for the single electron are either (E, — A)
or (Ey + A), as shown in Fig. 15-6.

Now add the second electron. Good, if we have two electrons, we can put
the first one in the lower state and the second one in the upper. Not quite; we
forgot something. Each one of the states is really double. When we say there’s
a possible state with the energy (E, — A), there are really two. Two electrons
can go into the same state if one has its spin up and the other, its spin down.
(No more can be put in because of the exclusion principle.) So there really are
two possible states of energy (Eq — A4). We can draw a diagram, as in Fig. 15-7,
which indicates both the energy levels and their occupancy. In the condition of
lowest energy both electrons will be in the lowest state with their spins opposite.
The energy of the extra bond in the ethylene molecule therefore is 2(E, — A) if
we neglect the interaction between the two electrons.

Let’s go back to the benzene. Each of the two states of Fig. 15-3 has three
double bonds. Each of these is just like the bond in ethylene, and contributes
2(Eq — A) to the energy if Ey is now the energy to put an electron on a site in
benzene and A is the amplitude to flip to the next site. So the energy should
be roughly 6(E, — A4). But when we studied benzene before, we got that the
energy was lower than the energy of the structure with three extra bonds. Let’s see
if the energy for benzene comes out lower than three bonds from our new point
of view.

We start with the six-times ionized benzene ring and add one electron. Now
we have a six-state system. We haven’t solved such a system yet, but we know
what to do. We can write six equations in the six amplitudes, and so on. But
let’s save some work—by noticing that we’ve already solved the problem, when
we worked out the problem of an electron on an infinite line of atoms. Of course,
the benzene is not an infinite line, it has 6 atomic sites in a circle. But imagine that
we open out the circle to a line, and number the atoms along the line from 1 to 6.
In an infinite line the next location would be 7, but if we insist that this location
be identical with number 1 and so on, the situation will be just like the benzene
ring. In other words we can take the solution for an infinite line with an added
requirement that the solution must be periodic with a cycle six atoms long. From
Chapter 13 the electron on a line has states of definite energy when the amplitude

at each site is e***» = ¢***"  For each k the energy is

E = Ey — 24 cos kb. (15.25)
We want to use now only those solutions which repeat every 6 atoms. Let’s

do first the general case for a ring of N atoms. If the solution is to have a period
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of N atomic spacing, e’**¥ must be unity; or kbN must be a multiple of 27. Taking

s to represent any integer, our condition is that
kbN = 2ms. (15.26)

We have seen before that there is no meaning to taking k’s outside the range
=q/b. This means that we get all possible states by taking values of s in the range
=N/2.

We find then that for an N-atom ring there are N definite energy statest
and they have wave numbers k, given by

_or

ko= 38 (15.27)

Each state has the energy (15.25). We have a line spectrum of possible energy
levels. The spectrum for benzene (N = 6) is shown in Fig. 15-8(b). (The numbers
in parentheses indicate the number of different states with the same energy.)

There’s a nice way to visualize the six energy levels, as we have shown in
part (a) of the figure. Imagine a circle centered on a level with E, and with a radius
of 24. If we start at the bottom and mark off six equal arcs (at angles from the
bottom point of ksb = 2ws/N, or 27s/6 for benzene), then the vertical heights of
the points on the circle are the solutions of Eq. (15.25). The six points represent
the six possible states. The lowest energy level is at (E, — 24); there are two
states with the same energy (E, — A), and so on.] These are possible states for
one electron. If we have more than one electron, two—with opposite spins—can
go into each state.

For the benzene molecule we have to put in six electrons. For the ground
state they will go into the lowest possible energy states—two at s = 0, two at
s = +1,and two at s = —1. According to the independent particle approxima-
tion the energy of the ground state is

Eground = 2(E0 - 2A) + 4(E0 - A)
— 6E, — 84, (15.28)

The energy is indeed less than that of three separate double bonds—by the amount
24.

By comparing the energy of benzene to the energy of ethylene it is possible
to determine A. It comes out to be 0.8 electron volt, or, in the units the chemists
like, 18 kilocalories per mole.

We can use this description to calculate or understand other properties of
benzene. For example, using Fig. 15-8 we can discuss the excitation of benzene
by light. What would happen if we tried to excite one of the electrons? It could
move up to one of the empty higher states. The lowest energy of excitation would
be a transition from the highest filled level to the lowest empty level. That takes
the energy 24. Benzene will absorb light of frequency v when Av = 24. There
will also be absorption of photons with the energies 34 and 44. Needless to say,
the absorption spectrum of benzene has been measured and the pattern of spectral
lines is more or less correct except that the lowest transition occurs in the ultra-
violet; and to fit the data one would have to choose a value of A4 between 1.4 and
2.4 electron volts. That is, the numerical value of A4 is two or three times larger
than is predicted from the chemical binding energy.

What the chemist does in situations like this is to analyze many molecules
of a similar kind and get some empirical rules. He learns, for example: For
calculating binding energy use such and such a value of A4, but for getting the
absorption spectrum approximately right use another value of 4. You may feel

T You might think that for N an even number there are N + 1 states. That is not
so because s = =N/2 give the same state.

1 When there are two states (which will have different amplitude distributions) with
the same energy, we say that the two states are “degenerate.” Notice that four electrons
can have the energy Eg — A.
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that this sounds a little absurd. It is not very satisfactory from the point of view
of a physicist who is trying to understand nature from first principles. But the
problem of the chemist is different. He must try to guess ahead of time what
is going to happen with molecules that haven't been made yet, or which aren’t
understood completely. What he needs is a series of empirical rules; it doesn’t
make much difference where they come from. So he uses the theory in quite a
different way than the physicist. He takes equations that have some shadow of the
truth in them, but then he must alter the constants in them—making empirical
corrections.

In the case of benzene, the principal reason for the inconsistency is our
assumption that the electrons are independent—the theory we started with is
really not legitimate. Nevertheless, it has some shadow of the truth because its
results seem to be going in the right direction. With such equations plus some
empirical rules—including various exceptions—the organic chemist makes his
way through the morass of complicated things he chooses to study. (Don't forget
that the reason a physicist can really calculate from first principles is that he
chooses only simple problems. He never solves a problem with 42 or even 6
electrons in it. So far, he has been able to calculate reasonably accurately only the
hydrogen atom and the helium atom.)

15-5 More organic chemistry

Let’s see how the same ideas can be used to study other molecules. Consider
a molecule like butadiene (1, 3)—it is drawn in Fig. 15-9 according to the usual
valence bond picture.

We can play the same game with the extra four electrons corresponding to
the two double bonds. If we remove four electrons, we have four carbon atoms
in a line. You already know how to solve a line. You say, “Oh no, I only know
how to solve an infinite line.” But the solutions for the infinite line also include
the ones for a finite line. Watch. Let N be the number of atoms on the line and
number them from 1 to N as shown in Fig. 15-10. In writing the equations for the
amplitude at position 1 you would not have a term feeding from position 0.
Similarly, the equation for position N would differ from the one that we used for
an infinite line because there would be nothing feeding from position N + 1,
But suppose that we can obtain a solution for the infinite line which has the follow-
ing property: the amplitude to be at atom 0 is zero and the amplitude to be at
atom (N + 1) is also zero. Then the set of equations for all the locations from
1 to N on the finite line are also satisfied. You might think no such solution exists
for the infinite line because our solutions all looked like e?**» which has the same
absolute value of the amplitude everywhere. But you will remember that the en-
ergy depends only on the absolute value of k, so that another solution, which is
equally legitimate for the same energy, would be e~#%». And the same is true of
any superposition of these two solutions. By subtracting them we can get the
solution sin kx,, which satisfies the requirement that the amplitude be zero at
x = 0. It still corresponds to the energy (E, — 24 cos kb). Now by a suitable
choice for the value of k we can also make the amplitude zero at xy, ;. This
requires that (N + 1)kb be a multiple of =, or that

kb (15.29)

-
wv+n®
where s is an integer from 1 to N. (We take only positive k’s because each solution
contains +k and —k; changing the sign of k gives the same state all over again.)

For the butadiene molecule, N = 4, so there are four states with
kb = w/5, 2w/5, 3w/5,

and  47/5. (15.30)

We can represent the energy levels using a circle diagram similar to the one
for benzene. This time we use a semicircle divided into five equal parts as shown
in Fig. 15-11. The point at the bottom corresponds to s = 0, which gives no
15-10



state at all. The same is true of the point at the top, which corresponds to s =
N + 1. The remaining 4 points give us four allowed energies. There are four
stationary states, which is what we expect having started with four base states.
In the circle diagram, the angular intervals are m/5 or 36 degrees. The lowest
energy comes out (E, — 1.6184). (Ah, what wonders mathematics holds; the
golden mean of the Greekst gives us the lowest energy state of the butadiene
molecule according to this theory!)

Now we can calculate the energy of the butadiene molecule when we put
in four electrons. With four electrons, we fill up the lowest two levels, each with
two electrons of opposite spin. The total energy is

E = 2(E, — 1.6184) + 2(E;, — 0.6184) = 4(E, — A) — 0.4774.
(15.31)

This result seems reasonable. The energy is a little lower than for two simple
double bonds, but the binding is not so strong as in benzene. Anyway this is the
way the chemist analyzes some organic molecules.

The chemist can use not only the energies but the probability amplitudes as
well. Knowing the amplitudes for each state, and which states are occupied, he
can tell the probability of finding an electron anywhere in the molecule. Those
places where the electrons are more likely to be are apt to be reactive in chemical
substitutions which require that an electron be shared with some other group of
atoms. The other sites are more likely to be reactive in those substitutions which
have a tendency to yield an extra electron to the system.

The same ideas we have been using can give us some understanding of a
molecule even as complicated as chlorophyll, one version of which is shown in
Fig. 15-12. Notice that the double and single bonds we have drawn with heavy
lines form a long closed ring with twenty intervals. The extra electrons of the
double bonds can run around this ring. Using the independent particle method
we can get a whole set of energy levels. There are strong absorption lines from
transitions between these levels which lie in the visible part of the spectrum, and
give this molecule its strong color. Similar complicated molecules such as the
xanthophylls, which make leaves turn red, can be studied in the same way.

There is one more idea which emerges from the application of this kind of
theory in organic chemistry. It is probably the most successful or, at least in a
certain sense, the most accurate. This idea has to do with the question: In what
situations does one get a particularly strong chemical binding? The answer is very
interesting. Take the example, first, of benzene, and imagine the sequence of events
that occurs as we start with the six-times ionized molecule and add more and more
electrons. We would then be thinking of various benzene ions—negative or
positive. Suppose we plot the energy of the ion (or neutral molecule) as a function
of the number of electrons. If we take E, = 0 (since we don’t know what it is),
we get the curve shown in Fig. 15-13. For the first two electrons the slope of the
function is a straight line. For each successive group the slope increases, and
there is a discontinuity in slope between the groups of electrons. The slope changes
when one has just finished filling a set of levels which all have the same energy and
must move up to the next higher set of levels for the next electron.

The actual energy of the benzene ion is really quite different from the curve
of Fig. 15-13 because of the interactions of the electrons and because of electro-
static energies we have been neglecting. These corrections will, however, vary
with # in a rather smooth way. Even if we were to make all these corrections, the
resulting energy curve would still have kinks at those values of n which just fill
up a particular energy level.

Now consider a very smooth curve that fits the points on the average like the
one drawn in Fig. 15-14. We can say that the points above this curve have “higher-
than-normal” energies, and the points below the curve have “lower-than-normal”

t The ratio of the sides of a rectangle which can be divided into a square and a similar
rectangle.
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energies. We would, in general, expect that those configurations with a lower-than-
normal energy would have an above average stability—chemically speaking.
Notice that the configurations farther below the curve always occur at the end of
one of the straight line segments—namely when there are enough electrons to fill
up an “energy shell,” as it is called. This is the very accurate prediction of the
theory. Molecules—or ions—are particularly stable (in comparison with other
similar configurations) when the available electrons just fill up an energy shell.

This theory has explained and predicted some very peculiar chemical facts.
To take a very simple example, consider a ring of three. It’s almost unbelievable
that the chemist can make a ring of three and have it stable, but it has been done.
The energy circle for three electrons is shown in Fig. 15-15. Now if you put two
electrons in the lower state, you have only two of the three electrons that you re-
quire. The third electron must be put in at a much higher level. By our argument
this molecule should not be particularly stable, whereas the two-electron structure
should be stable. It does turn out, in fact, that the neutral molecule of triphenyl
cyclopropenyl is very hard to make, but that the positive ion shown in Fig. 15-16 is
relatively easy to make. The ring of three is never really easy because there is
always a large stress when the bonds in an organic molecule make an equilateral
triangle. To make a stable compound at all, the structure must be stabilized in
some way. Anyway if you add three benzene rings on the corners, the positive
ion can be made. (The reason for this requirement of added benzene rings is not
really understood.)

In a similar way the five-sided ring can also be analyzed. If you draw the
energy diagram, you can see in a qualitative way that the six-electron structure
should be an especially stable structure, so that such a molecule should be most
stable as a negative ion. Now the five-ring is well known and easy to make and
always acts as a negative ion. Similarly, you can easily verify that a ring of 4 or 8
is not very interesting, but that a ring of 14 or 10—like a ring of 6—should be
especially stable as a neutral object.

15-6 Other uses of the approximation

There are two other similar situations which we will describe only briefly.
In considering the structure of an atom, we can consider that the electrons fill
successive shells. The Schrodinger theory of electron motion can be worked out
easily only for a single electron moving in a “central” field—one which varies only
with the distance from a point. How can we then understand what goes on in an
atom which has 22 electrons?! One way is to use a kind of independent particle
approximation. First you calculate what happens with one electron. You get a
number of energy levels. You put an electron into the lowest energy state. You
can, for a rough model, continue to ignore the electron interactions and go on
filling successive shells, but there is a way to get better answers by taking into
account—in an approximate way at least—the effect of the electric charge carried
by the electron. Each time you add an electron you compute its amplitude to be
at various places, and then use this amplitude to estimate a kind of spherically
symmetric charge distribution. You use the field of this distribution—together
with the field of the positive nucleus and all the previous electrons—to calculate
the states available for the next electron. In this way you can get reasonably cor-
rect estimates for the energies for the neutral atom and for various ionized states.
You find that there are energy shells, just as we saw for the electrons in a ring
molecule. With a partially filled shell, the atom will show a preference for taking
on one or more extra electrons, or for losing some electrons so as to get into the
most stable state of a filled shell.

This theory explains the machinery behind the fundamental chemical
properties which show up in the periodic table of the elements. The inert gases are
those elements in which a shell has just been completed, and it is especially difficult
to make them react. (Some of them do react of course—with fluorine and oxygen,
for example; but such compounds are very weakly bound; the so-called inert
gases are nearly inert.) An atom which has one electron more or one electron less
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than an inert gas will easily lose or gain an electron to get into the especially stable
(low-energy) condition which comes from having a completely filled shell—they
are the very active chemical elements of valence -1 or —1.

The other situation is found in nuclear physics. In atomic nuclei the protons
and neutrons interact with each other quite strongly. Even so, the independent
particle model can again be used to analyze nuclear structure. It was first discovered
experimentally that nuclei were especially stable if they contained certain particular
numbers of neutrons—namely 2, 8, 20, 28, 50, 82. Nuclei containg protons
in these numbers are also especially stable. Since there was initially no explanation
for these numbers they were called the “‘magic numbers” of nuclear physics. It is
well known that neutrons and protons interact strongly with each other; people
were, therefore, quite surprised when it was discovered that an independent
particle model predicted a shell structure which came out with the first few magic
numbers. The model assumed that each nucleon (proton or neutron) moved in a
central potential which was created by the average effects of all the other nucleons.
This model failed, however, to give the correct values for the higher magic numbers.
Then it was discovered by Maria Mayer, and independently by Jensen and his
collaborators, that by taking the independent particle model and adding only a
correction for what is called the ‘“spin-orbit interaction,” one could make an
improved model which gave all of the magic numbers. (The spin-orbit interaction
causes the energy of a nucleon to be lower if its spin has the same direction as its
orbital angular momentum from motion in the nucleus.) The theory gives even
more—its picture of the so-called “shell structure” of the nuclei enables us to
predict certain characteristics of nuclei and of nuclear reactions.

The independent particle approximation has been found useful in a wide
range of subjects—from solid-state physics, to chemistry, to biology, to nuclear
physics. It is often only a crude approximation, but is able to give an understanding
of why there are especially stable conditions—in shells. Since it omits all of the
complexity of the interactions between the individual particles, we should not be
surprised that it often fails completely to give correctly many important details.
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