32

Refractive Index of Dense Materials

32-1 Polarization of matter

We want now to discuss the phenomenon of the refraction of light—and also,
therefore, the absorption of light—by dense materials. In Chapter 31 of Volume [
we discussed the theory of the index of refraction, but because of our limited
mathematical abtlities at that time, we had to restrict ourselves to finding the index
only for materials of low density, like gases. The physical principles that produced
the index were, however, made clear The electric field of the light wave polarizes
the molecules of the gas, producing oscillating dipole moments. The acceleration
of the oscillating charges radiates new waves of the field. This new field, interfering
with the old field, produces a changed field which is equivalent to a phase shift of
the original wave. Because this phase shift is proportional to the thickness of the
material, the effect 1s equivalent to having a different phase velocity in the material.
When we looked at the subject before, we neglected the complications that arise
from such effects as the new wave changing the fields at the oscillating dipoles.
We assumed that the forces on the charges in the atoms came just from the incoming
wave, whereas, in fact, their oscillations are driven not only by the incoming wave
but also by the radiated waves of all the other atoms It would have been difficult
for us at that time to include this effect, so we studied only the rarefied gas,
where such effects are not important.

Now, however, we will find that it is very easy to treat the problem by the use
of differential equations. This method obscures the physical origin of the index
(as coming from the re-radiated waves interfering witl: wie original waves), but
it makes the theory for dense materials much simpler. This chapter will bring
together a large number of pieces from our earlier work. We’ve taken up practically
everything we will need, so there are relatively few really new ideas to be introduced.
Since you may need to refresh your memory about what we are going to need,
we give 1n Table 32-1 a list of the equations we are going to use, together with a
reference to the place where each can be found. In most instances, we will not take
the time to give the physical arguments again, but will just use the equations.

Table 32-1

Our work in this chapter will be based on the following material,
already covered in earlier chapters

Subject Reference Equation
Damped oscillations Vol 1, Chap. 23 m(x + ¥Yx 4+ wix) = F
2
Index of gases Vol I, Chap. 31 n=14+ ! _;\’q‘—
2 eo(wi — w?)
n=n —n"
Mobility Vol. I, Chap. 41 mx + ux = F
2
Electrical conductivity Vol. I, Chap. 43 po= T o= Naer
m m
Polarizability Vol II, Chap. 10 ppol = =V - P
Inside dielectrics Vol. IT, Chap 11 Eo.. = E + 3L P
€0
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We begin by recalling the machinery of the index of refraction for a gas.
We suppose that there are N particles per unit volume and that each particle be-
haves as a harmonic oscillator. We use a model of an atom or molecule in which
the electron is bound with a force proportional to its displacement (as though the
electron were held 1n place by a spring). We emphasized that this was not a legiti-
mate classical model of an atom, but we will show later that the correct quantum
mechanical theory gives results equivalent to this model (in simple cases). In our
earlier treatment, we did not include the possibility of a damping force in the atomic
oscillators, but we will do so now. Such a force corresponds to a resistance to the
motion, that is, to a force proportional to the velocity of the electron. Then the
equation of motion is

F = g.E = m(*¥ + vx + wgx), (32.1)

where x 15 the displacement parallel to the direction of E. (We are assuming an
1sotropic oscillator whose restoring force is the same in all directions. Also, we
are taking, for the moment, a linearly polarized wave, so that E doesn’t change
direction.) If the electric field acting on the atom varies sinusoidally with time,
we write

E = Egpe™'. 32.2)

The displacement will then oscillate with the same frequency, and we can let

x = xge*!
Substituting ¥ = wwx and ¥ = —w?2x, we can solve for x in terms of E:
/M }
= o g/m . (32.3)

—w? + Yw + w(z)

Knowing the displacement, we can calculate the acceleration X and find the
radiated wave responsible for the index. This was the way we computed the index
in Chapter 31 of Volume I.

Now, however, we want to take a different approach. The induced dipole
moment p of an atom 1s ¢.x or, using Eq. (32.3),

2//
p=- fh%’,’f,,,,, , E. (32.4)
—w 4+ Yo + wy

Since p 1s proportional to E, we write
P = €oa(w)E, (32.5)
where « 15 called the atomic polarizability.* With this definition, we have

2
o — ge/Mmeo (326
—w? + Yw + wg

The quantum mechanical solution for the motions of electrons in atoms
gives a similar answer except with the following modifications. The atoms have
several natural frequencies, each frequency with 1ts own dissipation constant
v. Also the effective ““strength” of each mode is different, which we can represent
by multiplying the polarizability for each frequency by a strength factor f. which
1s a number we expect to be of the order of 1 Representing the three parameters
w, 7, and f by w;, ¥, and f; for each mode of oscillation, and summing over the

* Throughout this chapter we follow the notation of Chapter 31 of Volume I, and let
« represent the atonuc polarizability as defined here. In the last chapter, we used « to
represent the volume polarizability—the ratio of P to E In the notation of t/us chapter
P = NaeoE (see Eq 32.8)
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various modes, we modify Eq. (32.6) to read

aw) = -4 5™ i . (327)
k

2 . 2
—w” + Yw + wok

If N is the number of atoms per unit volume in the material, the polarization
P is just Np = eyNaE, and 1s proportional to E:

P = e,Na(w)E. (32.8)

In other words, when there is a sinusoidal electric field acting in a material, there
is an induced dipole moment per unit volume which is proportional to the electric
field—with a proportionality constant « that, we emphasize, depends upon the
frequency. At very high frequencies, « 1s small; there 1s not much response. How-
ever, at low frequencies there can be a strong response. Also, the proportionality
constant 1s a complex number, which means that the polarization does not exactly
follow the electric field, but may be shifted in phase to some extent At any rate,
there is a polarization per umt volume whose magnitude 1s proportional to the
strength of the electric field.

32-2 Maxwell’s equations in a dielectric

The existence of polarization in matter means that there are polarization
charges and currents inside of the material, and these must be put mto the complete
Maxwell equations in order to find the fields We are going to solve Maxwell’s
equations this _5,1mc in a situation 1n which the charges and currents are not zero,
as in a vacuum, but are given implicitly by the polarization vector  Our first
step 1s to find explicitly the charge density p and current density j, averaged over
a small volume of the same size we had in mind when we defined P. Then the
p and j we need can be obtained from the polarization.

We have seen in Chapter 10 that when the polarization P varies from place
to place, there is a charge density given by

Ppol = —Vv- P (329)

At that time, we were dealing with static fields, but the same formula is valid also
for time-varying fields However, when P varies with time, there are charges 1n
motion, so there is also a polarizauion curreni. Each of the oscillating charges
contributes a current equal to its charge ¢,, times its velocity »  With & such
charges per unit volume, the current density j 1s

j = Ng.v.

Since we know that » = dx/dr, then y = Ng.(dx/dr), which 1s jyust dP/dr. There-
fore the current density from the varying polarization is

ap

ipol = ?{t (32]0)

Our problem is now direct and simple. We write Maxwell’s equations with
the charge density and current density expressed in terms of P, using Eqgs. (32.9)
and (32 10). (We assume that there are no other currents and charges in the
material.) We then relate P to L with Eq. (32.5), and we solve the equation for
E and B—Ilooking for the wave solutions

Before we do this, we would like to make an historical note. Maxwell origi-
nally wrote his equations 1n a form which was different from the one we have been
using. Because the equations were written in this different form for many years—
and are still written that way by many people—we will explain the difference In
the early days. the mechanism of the dielectric constant was not fully and clearly
appreciated. The nature of atoms was not understood, nor that there was a polar-
ization of the material. So people did not appreciate that there was a contribution
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to the charge density p from Vv - P. They thought only in terms of charges that
were not bound to atoms (such as the charges that flow in wires or are rubbed
off surfaces).

Today, we prefer to let p represent the rotal charge density, including the part
from the bound atomic charges. If we call that part p,,1, we can write

p = Prol + Pothers

where p,er 1s the charge density considered by Maxwell and refers to the charges
not bound to individual atoms. We would then write

v E = Prol ™ Pother
€0

Substituting p,,1 from Eq. (32.9),

V‘Ezpo_th_”__l_v.P
€0 €0
or
v (GOE + P) = Pother- (32'11)

The current density in the Maxwell equations for ¥ X B also has, in general,
contributions from bound atomic currents. We can therefore write

] = Jpol + Jothers

and the Maxwell equation becomes

2w X B = Totner 4 Jpot 9E (32 12)
€q €0 at

Using Eq. (32.10), we get
. ) d
€’V X B = joner + 3; (E + P). (32113)

Now you can see that if we were to define a new vector D by
D = ¢E + P, (32.14)
the two field equations would become

v:-D = Pother (3215)
and
, oD
6()C2V X B = Jother + 19'1 : (32]6)
These are actually the forms that Maxwell used for dielectrics. His two remaining

equations were

oB
VXE—_E"

and
vV-B=0,

which are the same as we have been using.

Maxwell and the other early workers also had a problem with magnetic
materials (which we will take up soon) Because they did not know about the
circulating currents responsible for atomic magnetism, they used a current density
that was missing stil another part Instead of Eq. (32.16), they actually wrote

v X H = j + %TD (32.17)
where H differs from egc?B because it includes the effects of atomic currents.
(Thenj' represents what 1s left of the currents.) So Maxwell had four field vectors—
E, D, B, and H—the D and H were hidden ways of not paying attention to what
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was going on inside the material You will find the equations written this way in
many places.

To solve the equations, it is necessary to relate D and H to the other fields,
and people used to write

D = ¢E and B = uH. (32.18)

However, these relations are only approximately true for some materials and
even then only if the fields are not changing rapidly with time. (For sinusoidally
varying fields one often can write the equations this way by making € and u complex
functions of the frequency, but not for an arbitrary time variation of the fields.)
So there used to be all kinds of cheating 1n solving the equations. We think the
right way is to keep the equations in terms of the fundamental quantities as we
now understand them—and that’s how we have done it.

32-3 Waves in a dielectric

We want now to find out what kind of electromagnetic waves can exist in a
dielectric material in which there are no extra charges other than those bound in

atoms. Sowe takep = —V - Pandj = 9P/dr. Maxwell’s equations then become
, E- _YP 2 _ 9 (P
(a) V- E = o (b) cVXB—at<€U+E>
4B (32.19)
(c)VXE:——a—t d) v-B=20

We can solve these equations as we have done before. We start by taking
the curl of Eq. (32.19¢):

v><(v><E)=—§tv><B.

Next, we make use of the vector identity
vV X (VX E)=vV(v-E)— VI,
and also substitute for v X B, using Eq. (32 19b); we get

2 2
Vv E)—vE- - 2P _13E

€c? a2 ¢Z 912
Using Eq. (32 19a) for Vv - E, we get
2, 1 O°E_ 1 _ 1 o*P

So instead of the wave equation, we now get that the D’Alembertian of E is equal
to two terms involving the polarization P.

Since P depends on E, however, Eq. (32.20) can still have wave solutions.
We will now Iimit ourselves to wsotropic dielectrics, so that P is always 1n the same
direction as E. Let’s try to find a solution for a wave going n the z-direction
Then, the electric field might vary as ¢!“!™*%, We will also suppose that the wave
is polarized in the x-direction—that the electric field has only an x-component.
We write

E, = Ey'“' =9, (32.21)

You know that any function of (z — vf) represents a wave that travels with
the speed v. The exponent of Eq. (32.21) can be written as

—1k<z—%t>,

0, Eq. (32 21) represents a wave with the phase velocity

Uph = CO/ k -
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The index of refraction » is defined (see Chapter 31, Vol. I) by letting

v €
ph = o
Thus Eq. (32 21) becomes
Ex — Eoezw(t—nz/c)‘

So we can find » by finding what value of k is required if Eq. (32.21) is to satisfy
the proper field equations, and then using

n=". (32.22)

In an isotropic material, there will be only an x-component of the polarization;
then P has no variation with the x-coordinate, so v+ P = 0, and we get rid of
the first term on the right-hand side of Eq. (32.20) Also, since we are assuming a

linear dielectric, P, will vary as e*!, and 82P,/8t? = —w?P,. The Laplacian in
Eq. (32.20) becomes simply 9%E,/dz%> = —k2E,, so we get
Cl)2 Cl)z
—Kk’E, + S5 Ep = — 5 P (32.23)
c €C2

Now let us assume for the moment that since E is varying sinusoidally, we
can set P proportional to E, as in Eq. (32.5). (We'll come back to discuss this
assumption later.) We write

Px = G()NOIE,;.

Then E, drops out of Eq. (32.23), and we find

w

2
k? = = (1 + No). (32.24)
We have found that a wave like Eq. (32.21), with the wave number k given by

Eq. (32 24), will satisfy the field equations. Using Eq. (32.22), the index # is given by

n? =1+ Na. (32.25)

Let’s compare this formula with what we obtained in our theory of the index
of a gas (Chapter 31, Vol. I). There, we got Eq (31.29), which is

2
n=1+i N 1 (32.26)
2mey 2 4 2
Taking o« from Eq. (32.6), Eq (32.25) would give us
2
nt =14 N ‘ (32.27)

Meéo —u? + vw + wi

First, we have the new term in :Yw, because we are including the dissipation of
the oscillators. Second, the left-hand side is # instead of 2, and there is an extra
factor of 1/2. But notice that if &V is small enough so that # 1s close to one (as it
is for a gas), then Eq. (32.27) says that n? 1s one plus a small number: 7% = 1 + e.
We can then writen = /1 + € = 1 + €/2, and the two expressions are equiva-
lent. Thus our new method gives for a gas the same result we found earlier.
Now you might think that Eq. (32.27) should give the index of refraction
for dense materials also. It needs to be modified, however, for several reasons.
First, the derivation of this equation assumes that the polarizing field on each
atom is the field E,. That assumption is not right, however, because in dense
materials there is also the field produced by other atoms in the vicinity, which may
be comparable to E,. We considered a similar problem when we studied the static
fields in dielectrics. (See Chapter 11.) You will remember that we estimated the
field at a single atom by imagining that 1t sat in a spherical hole in the surrounding
dielectric. The field mn such a hole—which we called the local field—is increased
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over the average field E by the amount P/3eq. (Remember, however, that this
result is only strictly true 1n isotropic materials—including the special case of a
cubic crystal.)

The same arguments will hold for the electric field in a wave, so long as the
wavelength of the wave is much longer than the spacing between atoms. Limiting
ourselves to such cases, we write

P
Elocal = E + 36—0 . (3228)

This local field is the one that should be used for E in Eq. (32.3); that is, Eq.(32.8)
should be rewritten:
P = egNaFE . (32.29)

Using Ejocar from Eq. (32.28), we find

f()N(X <E + ~€~>

P 36()

or

Na

P = 1 Nar3y ©F

(32.30)
In other words, for dense materials P is still proportional to E (for sinusodal
fields). However, the constant of proportionality is not egNa, as we wrote below

Eq. (32.23), but should be €gNe/[1 — (Na/3)]. So we should correct Eq (32.25)
to read

2 Na
— _ . 2.
n 1+1-—(Na/3) (32.31)
It will be more convenient if we rewrite this equation as
2
n°—1
3 nz_—i——§ = Na, (32.32)

which is algebraically equivalent. This is known as the Clausius-Mosotti equation.

There is another complication 1n dense materials. Because neighboring atoms
are so close, there are strong interactions between them. The internal modes of
oscillation are, therefore, modified. The natural frequencies of the atomic oscilla-
tions are spread out by the interactions, and they are usually quite heavily damped
—the resistance coefficient becomes quite large. So the wgy’s and 7’s of the solid
will be quite different from those of the free atoms. With these reservations, we
can still represent «, at least approximately, by Eq. (32.7). We have then that

n® —1 Ng? fr
3 nE+ 2 me Z 2 2 (32.33)
0 —w" + Vw + wok

One final complication. If the dense material is a mixture of several compo-
nents, each will contribute to the polarization. The total « will be the sum of the
contributions from each component of the mixture [except for the inaccuracy of
the local field approximation, Eq. (32.28), in ordered crystals—effects we discussed
when analyzing ferroelectrics]. Writing N, as the number of atoms of each com-
ponent per unit volume, we should replace Eq. (32.32) by

n® — 1
3 <m> = z]: N]a,, (3234)

where each «, will be given by an expression like Eq. (32.7). Equation (32.34)
completes our theory of the index of refraction. The quantity 3(r%2 — 1)/(n? + 2)
is given by some complex function of frequency, which 1s the mean atomic polariz-
ability a(w). The precise evaluation of a(w) (that is, finding f;, 7+ and wgy) in dense
substances is a difficult problem of quantum mechanics. It has been done from
first principles only for a few especially simple substances.
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Fig. 32-1. A graph of Ex for some
instant ¢, if nj = ng/2.

32-4 The complex index of refraction

We want to look now at the consequences of our result, Eq (32.33). Furst.
we notice that « 1s complex, so the index # 1s going to be a complex number. What
does that mean”? Let’s say that we write n as the sum of a real and an imaginary
part:

n = np — iny, (32 35)

where nj; and ny are real functions of @ We write /n; with a minus sign, so that n,
will be a positive quantity in all ordinary optical materials. (In ordinary inactive
materials—that are not, like lasers, hght sources themselves— is a positive number,
and that makes the imaginary part of n negative.) Our plane wave of Eq. (32.21)
is written 1n terms of # as

Ex: _ Eoe——zw(t—nz/t)
Writing » as 1 Eq. (32.35), we would have
E.x: — Eoe-wnlz’{ezm(IArngzltﬁ. (32 36)

The term e k2o represents a wave travelling with the speed c¢/nj, so ny
represents what we normally think of as the index of refraction. But the amplitude
of this wave is
Ene—wnlz/c
s

which decreases exponentially with z A graph of the strength of the electric field
at some instant as a function of z is shown in Fig. 32-1, for n; = ny/2m. The
imaginary part of the index represents the attenuation of the wave due to the
energy losses 1n the atomic oscillators. The imntensity of the wave 18 proportional
to the square of the amplitude, so
Intensity «e—20mr#/e,
This is often written as
Intensity o e™,

where 8 = 2wn//c is called the absorption coefficient. Thus we have in Eq (32.33)
not only the theory of the index of refraction of materals, but the theory of their
absorption of light as well.

In what we usually consider to be transparent material, the quantity ¢/wn;—
which has the dimensions of a length—is quite large in comparison with the
thickness of the material.

32-5 The index of a mixture

There is another prediction of our theory of the index of refraction that we
can check against experiment. Suppose we consider a mixture of two materials.
The index of the mixture 1s not the average of the two indexes, but should be
given in terms of the sum of the two polarizabilities, as in Eq. (32.34). If we ask
about the index of, say, a sugar solution, the total polarizability 1s the sum of the
polarizability of the water and that of the sugar. Fach must, of course, be cal-
culated using for N the number per unit volume of the molecules of the particular
kind. In other words, if a given solution has &, molecules of water, whose polariz-
ability 18 «;, and N, molecules of sucrose (C,H;50,;), whose polarizability 1s
ao, we should have that

n® — 1
3 <;12—_;—2*> = N](Xl + Ngag. (32 37)

We can use this formula to test our theory against experiment by measuring
the index for various concentrations of sucrose in water. We are making several
assumptions here, however. Our formula assumes that there 1s no chemical action
when the sucrose 1s dissolved and that the disturbances to the individual atomic
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Refractive index of sucrose solutions, and comparison with predictions of Eq. (32.37).

Data from Handbook

Table 32-2

A B C D E F
Moles of Moles of N2 — 1 Y
Fraction of sucrose density n sucrosed water® 3 (’“TZ"“ >
by weight (gm/cm?) at 20°C per liter, per liter, ne+2
N2/Ng N1/Ng
0= 0.9982 1.333 0 55.5 0617
0.30 1.1270 1.3811 0.970 43.8 ‘ 0 698
0.50 1.2296 1.4200 1.798 3415 0.759
085 1.4454 1.5033 3.59 1202 0.886
1.00P 1.588 1.5577¢ 4 64 0 0.960

2 pure water
caverage (see text)
° molecular weight of water = 18

> sugar crystals

oscillators are not too different for various concentrations. So our result is certainly
only approximate. Anyway, let’s see how good it is.

We have picked the example of a sugar solution because there is a good table
of measurements of the index of refraction in the Handbook of Chemistry and
Physics and also because sugar 1s a molecular crystal that goes into solution with-
out 10onizing or otherwise changing its chemical state.

We give in the first three columns of Table 32-2 the data from the handbook.
Column A is the percent of sucrose by weight, column B is the measured density
(gm/cm?), and column C is the measured index of refraction for hght whose
wavelength is 589.3 millimicrons. For pure sugar we have taken the measured
index of sugar crystals. The crystals are not isotropic, so the measured index is
different along different directions. The handbook gives three values:

n, = 1.5376, ny = 1.5651, nz = 1.5705.

We have taken the average.

Now we could try to compute # for each concentration, but we don’t know
what value to take for a; or ag. Let’s test the theory this way: We will assume
that the polarizability of water (a;) is the same at all concentrations and compute
the polarizability of sucrose by using the experiment of values for # and solving
Eq. (38.27) for as. If the theory is correct, we should get the same «, for all
concentrations.

First, we need to know N; and N,: let’s express them 1n terms of Avogadro’s
number, N. Let’s take one liter (1000 cm®) for our unit of volume. Then N,/Ng 18
the weight per Iiter divided by the gram-molecular weight. And the weight per
liter is the density (multiplied by 1000 to get grams per liter) times the fractional
weight of either the sucrose or the water. In this way, we get No/N, and N{/N,
as in columns D and E of the table.

In column F we have computed 3(n? — 1)/(n* + 2) from the experimental
values of n in column C. For pure water, 3(n? — 1)/(n? + 2)is 0.617, which is
equal to just Nyo(. We can then fill in the rest of Column G, since for each row
row G/E may be in the same ratio—namely, 0.617:55.5. Subtracting column G
from column F, we get the contribution Nsas of the sucrose, shown in column H
Dividing these entries by the values of No/N in column D, we get the value of
Ngag shown in column J

From our theory we would expect all the values of Ngay to be the same They
are not exactly equal, but pretty close. We can conclude that our ideas are fairly
correct. Even more, we find that the polarizability of the sugar molecule doesn’t
seem to depend much on its surroundings—its polarizability is nearly the same in a
dilute solution as it is in the crystal.
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0617
0.487
0.379
0.1335

= 342

J

N(Ja 2
(gm, Iiter)

0213
0211
0210
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32-6 Waves in metals

The theory we have worked out in this chapter for solid materials can also
be applied to good conductors, like metals, with very little modification. In metals
some of the electrons have no binding force holding them to any particular atom;
1t 1s these “free” electrons which are responsible for the conductivity. There are
other electrons which are bound, and the theory above is directly applicable to
them. Their influence, however, is usually swamped by the effects of the con-
duction electrons. We will consider now only the effects of the free electrons

If there is no restoring force on an electron—but still some resistance to its
motion—its equation of mouon differs from Eq. (32.1) only because the term in
wox is lacking. So all we have to do 1s set w2 = O in the rest of our derivations—
except that there is one more difference. The reason that we had to distinguish
between the average field and the local field in a dielectric is that in an insulator
each of the dipoles is fixed in position, so that it has a definite relationship to the
position of the others. But because the conduction electrons in a metal move
around all over the place, the field on them on the average is just the average field
E. So the correction we made to Eq. (32 5) by using Eq. (32.28) should not be
made for conduction electrons Therefore the formula for the index of refraction
for metals should look like Eq. (32.27), except with wg set equal to zero, namely,

P (3238)

This is only the contribution from the conduction electrons, which we will assume
1s the major term for metals

Now we even know how to find what value to use for v, because it is related
to the conductivity of the metal. In Chapter 43 of Volume I we discussed how the
conductivity of a metal comes from the diffusion of the free electrons through the
crystal. The electrons go on a jagged path from one scattering to the next, and
between scatterings they move freely except for an acceleration due to any average
electric field (as shown in Fig 32-2). We found in Chapter 43 of Volume I that
the average drift velocity is just the acceleration times the average time 7 between
collisions. The acceleration is g F/m, so

FE
tanty = 425 7. (32.39)

This formula assumed that E was constant, so that »..r, was a steady velocity.
Since there 1s no average acceleration, the drag force 1s equal to the applied force.
We have defined ¥ by saying that vmv is the drag force [see Eq. (32.1)], which is
q.E; therefore we have that

Yy =_. (32.40)

Although we cannot easily measure 7 directly, we can determine it by measur-
ing the conductivity of the metal. It is found experimentally that an electric field E
in a metal produces a current with the density j proportional to E (for 1sotropic
materials):
j = oF.

The proportionality constant ¢ 1s called the conductivity. This 1s just what we expect
from Eq. (32.39) if we set

j = quvdrlft-
Then
2
o = Na. (32.41)
m

So 7-—and therefore y—can be related to the observed electrical conductivity.
Using Eqs (32.40) and (32 41), we can rewrite our formula for the index, Eq.
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(32.38), in the following form:

2 __1/60
" ! iw(l + wr)’ (32.42)
where
1 mo
TE3T NE' (32.43)

This is a convenient formula for the index of refraction of metals.

32-7 Low-frequency and high-frequency approximations; the skin depth and the
plasma frequency

Our result, Eq. (32.42), for the index of refraction for metals predicts quite
different characteristics for wave propagation at different frequencies. Let’s first
see what happens at very Jow frequencies. If w is small enough, we can approximate
Eq. (32.42) by

n = —; 2. (32.44)

so for low frequencies,
n=\Vo/2eqw (1 — ). (32.45)

The real and imaginary parts of » have the same magnitude. With such a large
imaginary part to s, the wave is rapidly attenuated in the metal. Referring to
Eq. (32.36), the amplitude of a wave going in the z-direction decreases as

exp [— Vow 2egc? z. (32.46)
Let’s write this as
e 28, (32.47)

where & 1s then the distance in which the wave amplitude decreases by the factor
e~! = 1/2.72—or roughly one-third. The amplitude of such a wave as a function
of z is shown in Fig. 32-3. Since electromagnetic waves will penetrate into a

metal only this distance, § is called the skin depth. It is given by

8 = V2ec2/ow. (32.48)

Now what do we mean by “low” frequencies? Looking at Eq. (32.42), we
see that it can be approximated by Eq. (32.44) only if wr 1s much less than one
and if weg/o 18 also much less than one—that is, our low-frequency approximation
applies when

w <K !
pu

and
w < Z. (32.49)
€o
Let’s see what frequencies these correspond to for a typical metal like copper.
We compute 7 by using Eq. (32.43), and /¢, by using the measured conductivity.

We take the following data from a handbook:

o = 5.76 X 107 (ohm-meter)™’,

atomic weight = 63.5 grams,

density = 8.9 grams — cm ™%,

Avogadro’s number = 6.02 X 102* (gram atomic weight) .

*Or writing —1 = e~"/2; v/ =1 = e7'"* = cosw/4 — i sinw/4, which gives the
same result.
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Fig. 32-3. The amplitude of a trans-
verse electromagnetic wave as a function
of distance into a metal.



If we assume that there is one free electron per atom, then the number of electrons
per cubic meter is
N = 8.5 X 10%® meter—".

Using
g. = 1.6 X 10719 coulomb,
€o = 8.85 X 1072 farad-meter !,
m = 9.11 X 1073 kgm,
we get
T =24 X 107" sec,
1 )
- =41 X 103 sec™!,
.
7~ 65 X 1018 sec™ 1,
€o

So for frequencies less than about 10'? cycles per second, copper will have the
“low-frequency” behavior we describe (that means for waves whose free-space
wavelength is longer than 0.3 millimeters—very short radio waves!).

For these waves, the skin depth in copper is

5 — . [0-028 m2-sec—1
N w

For microwaves of 10,000 megacycles per second (3-cm waves)
8 =67 X 10~*cm.

The wave penetrates a very small distance.

We can see from this why in studying cavities (or waveguides) we needed to
worry only about the fields inside the cavity, and not in the metal or outside the
cavity. Also, we see why the losses 1n a cavity are reduced by a thin plating of
silver or gold. The losses come from the current, which are appreciable only in a
thin layer equal to the skin depth.

Suppose we look now at the index of a metal like copper at high frequencies.
For very high frequencies wr is much greater than one, and Eq. (32.42) 1s well
approximated by -

2

== e (32.50)

For waves of high frequencies the index of a metal becomes real——and less than
one! This is also evident from Eq. (32.38) if the dissipation term with 7 is neglected,
as can be done for very large w. Equation (32.38) gives
2
w2 = — e (32.51)

I’l’lE()(,t)2

which is, of course, the same as Eq. (32.50). We have seen before the quantity
NgqZ/me,, which we called the square of the plasma frequency (Section 7-3):

2
w? = N,
€Egm

so we can write Eq. (32.50) or Eq. (32.51) as

2
n2:1_<ﬁ>.
w

The plasma frequency is a kind of “critical” frequency.

For w < w, the index of a metal has an imaginary part, and waves are
attenuated; but for w >> w, the index 1s real, and the metal becomes transparent.
You know, of course, that metals are reasonably transparent to x-rays. But
some metals are even transparent in the ultraviolet. In Table 32-3 we give for
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several metals the experimental observed wavelength at which they begin to become
transparent. In the second column we give the calculated critical wavelength
Ay = 2mc/w,. Considering that the experimental wavelength is not too well
defined, the fit of the theory is fairly good.

You may wonder why the plasma frequency w, should have anything to do
with the propagation of electromagnetic waves in metals. The plasma frequency
came up in Chapter 7 as the natural frequency of density oscillations of the free
electrons. (A clump of electrons is repelled by electric forces, and the inertia of the
electrons leads to an oscillation of density.) So longitudinal plasma waves are
resonant at w,. But we are now talking about rransverse electromagnetic waves,
and we have found that transverse waves are absorbed for frequencies below w,,.
(It’s an interesting and not accidental coincidence.)

Although we have been talking about wave propagation in metals, you ap-
preciate by this time the universality of the phenomena of physics—that 1t doesn’t
make any difference whether the free electrons are in a metal or whether they are
in the plasma of the ionosphere of the earth, or in the atmosphere of a star. To
understand radio propagation in the ionosphere, we can use the same expressions—
using, of course, the proper values for N and 7. We can see now why long radio
waves are absorbed or reflected by the ionosphere, whereas short waves go right
through. (Short waves must be used for communication with satellites.)

We have talked about the high- and low-frequency extremes for wave propaga-
tion in metals. For the in-between frequencies the full-blown formula of Eq.
(32.42) must be used. In general, the index will have real and imaginary parts;
the wave is attenuated as it propagates into the metal. For very thin layers, metals
are somewhat transparent even at optical frequencies. As an example, special
goggles for people who work around high-temperature furnaces are made by
evaporating a thin layer of gold on glass. The visible light 1s transmitted fairly
well—with a strong green tinge—but the infrared is strongly absorbed.

Finally, it cannot have escaped the reader that many of these formulas re-
semble in some ways those for the dielectric constant x discussed in Chapter 10.
The dielectric constant xk measures the response of the material to a constant field,
that is, for w = 0. If you look carefully at the definition of » and « you see that
k is simply the limit of n® as w — 0. Indeed, placing w = 0 and n? = « in equa-
tions of this chapter will reproduce the equations of the theory of the dielectric
constant of Chapter 11.
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Table 32-3*

Wavelengths below which the metal
becomes transparent

Metal | A (experimental) A\, = 21rc/c;J,,
L1 1550 A 1550 A
Na 2100 2090
K 3150 2870
Rb 3400 3220 B

* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons, Inc.,
New York, 2nd ed., 1956, p. 266.



