31

Tensors

31-1 The tensor of polarizability

Physicists always have a haoit of taking the simplest example of any phenome-
non and calling 1t “physics,” leaving the more complicated examples to become
the concern of other fields—say of applied mathematics, electrical engineering,
chemistry, or crystallography. Even solid-state physics is aimost only half physics
because it worries too much about special substances. So in these lectures we will
be leaving out many interesting things. For instance, one of the important proper-
ties of crystals—or of most substances—is that their electric polarizability 1s
different in different directions. If you apply a field in any direction, the atomic
charges shift a little and produce a dipole moment, but the magnitude of the
moment depends very much on the direction of the field. That is, of course,
quite a comphcation. But 1n physics we usually start out by talking about the
special case in which the polarizability is the same in all directions, to make life
easier. We leave the other cases to some other field. Therefore, for our later work,
we will not need at all what we are going to talk about in this chapter.

The mathematics of tensors is particularly useful for describing properties
of substances which vary in direction—although that’s only one example of ther
use. Since most of you are not gomng to become physicists, but are going to go
into the real world, where things depend severely upon direction, sooner or later
you will need to use tensors. In order not to leave anything out, we are going to
describe tensors, although not in great detail. We want the feeling that our treat-
ment of physics is complete. For example, our electrodynamics is complete—as
complete as any electricity and magnetism course, even a graduate course. Our
mechanics is not complete, because we studied mechanics when you didn’t have a
high level of mathematical sophistication, and we were not able to discuss subjects
like the principle of least action, or Lagrangians, or Hamiltonians, and so on,
which are more elegant ways of describing mechanics. Except for general relativity,
however, we do have the complete laws of mechanics. Our electricity and magnetism
is complete, and a lot of other things are quite complete. The quantum mechanics,
naturally, will not be—we have to leave something for the future. But you should
at least know what a tensor is.

We emphasized in Chapter 30 that the properties of crystalline substances are
different in different directions—we say they are anisotropic. The variation of
the induced dipole moment with the direction of the applied electric field is only
one example, the one we will use for our example of a tensor. Let’s say that for a
given direction of the electric field the induced dipole moment per unit volume P
is proportional to the strength of the applied field E. (This is a good approximation
for many substances if E is not too large.) We will call the proportionality
constant o.* We want now to consider substances in which « depends on the
direction of the applied field, as, for example, in crystals like calcite, which make
double images when you look through them.

Suppose, in a particular crystal, we find that an electric field E in the x-direc-
tion produces the polarization P, in the x-direction. Then we find that an electric
field E, in the y-direction, with the same strength, as E produces a different polar-

* In Chapter 10 we followed the usual convention and wrote P = eoxE and called
x (“khi”) the “susceptibility.” Here, it will be more convenient to use a single letter, so
we write o for egx For 1sotropic dielectrics, a = (x—1)ep, where « 1s the dielectric constant
(see Section 10-4).
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Fig. 31-1. The vector addition of
solarizations in an anisotropic crystal.

ization P, in the p-direction. What would happen if we put an electric field at
45°? Well, that’s a superposition of two fields along x and y, so the polarization
P will be the vector sum of P and P, as shown in Fig. 31-1(a). The polarization
is no longer in the same direction as the electric field. You can see how that might
come about. There may be charges which can move easily up and down, but
which are rather stiff for sidewise motions. When a force is applied at 45°, the
charges move farther up than they do toward the side. The displacements are
not in the direction of the external force, because there are asymmetric internal
elastic forces.

There is, of course, nothing special about 45°. It is generally true that the
induced polarization of a crystal is not in the direction of the electric field. In our
example above, we happened to make a “lucky” choice of our x- and y-axes,
for which P was along E for both the x- and y-directions. If the crystal were
rotated with respect to the coordinate axes, the electric field E5 in the y-direction
would have produced a polarization P with both an x- and a y-component.
Similarly, the polarization due to an electric field in the x-direction would have
produced a polarization with an x-component and a y-component. Then the
polarizations would be as shown in Fig. 31-1(b), instead of as in part (a). Things
get more complicated—but for any field E, the magnitude of P is still proportional
to the magnitude of E.

We want now to treat the general case of an arbitrary orientation of a crystal
with respect to the coordinate axes. An electric field in the x-direction will produce
a polarization P with x-, y-, and z-components; we can write

P, = o, E,, P, = a,.F, P, = a,FE,. L1

All we are saying here is that if the electric field is in the x-direction, the
polarization does not have to be in that same direction, but rather has an x-, a y-,
and a z-component—each proportional to E,. We are calling the constants of
proportionality e, ey, and a.,, respectively (the first letter to tell us which com-
ponent of P is involved, the last to refer to the direction of the electric field).

Similarly, for a field in the p-direction, we can write

P, = a,,E, P, = a,F, P, = a,,F,; (31.2)
and for a field in the z-direction,

P, = o,.F, P, = o,E, P, o, F,. (31.3)

[

Now we have said that polarization depends linearly on the fields, so if there is an
electric field E that has both an x- and a y-component, the resulting x-component
of P will be the sum of the two P,’s of Eqgs. (31.1) and (31.2). If E has components
along x, y, and z, the resulting components of P will be the sum of the three
contributions in Eqs. (31.1), (31.2), and (31.3). In other words, P will be given by

P:c = azzEx + axyEy + azzEz:
P, = ayE, + apE, + ayEs, (31.4)
P, = o, F, + azyEy + .. F..

The dielectric behavior of the crystal is then completely described by the nine
quantities (azz, ®zy, Qzz @y, - - .), Which we can represent by the symbol «,.
(The subscripts i and j each stand for any one of the three possible letters x, y,
and z.) Any arbitrary electric field E can be resolved with the components E,, E,,
and E;; from these we can use the a,, to find P,, P,, and P,, which together give
the total polarization P. The set of nine coefficients «,, is called a fensor—in this
instance, the tensor of polarizability. Just as we say that the three numbers (E,,
E,, E;) “form the vector E,” we say that the nine numbers (azz, ayy, . . .) “form
the tensor a,,.”
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31-2 Transforming the tensor components

You know that when we change to a different coordinate system x’, ', and 2/,
the components E,., E,,, and E,. of the vector will be quite different—as will
also the components of P. So all the coefficients «,, will be different for a different
set of coordinates. You can, in fact, see how the a's must be changed by changing
the components of E and P in the proper way, because if we describe the same
physical electric field in the new coordinate system we should get the same polariza-
tion. For any new set of coordinates, P, is a linear combination of P,, P, and P,:

Py = aP, + bP, + cP,,

and similarly for the other components. If you substitute for P,, P,, and P, in
terms of the E’s, using Eq. (31.4), you get

P, = a(aszx + azyEy + azzEz)
+ b(ayE; + apEy + - 00)
+ clamEs + o),

Then you write E,, E,, and E, in terms of E,., E,., and E,-; for instance,
E, = dE, + VE, + ¢'E,,

where a’, b/, ¢’ are related to, but not equal to, a, b, c. So you have P,-, expressed
in terms of the components E,-, E,, and E, ; that is, you have the new a,,. It is
fairly messy, but quite straightforward.

When we talk about changing the axes we are assuming that the crystal stays
put i space. If the crystal were rotated with the axes, the o’s would not change.
Conversely, if the orientation of the crystal were changed with respect to the axes,
we would have a new set of «'s. But if they are known for any one orientation of
the crystal, they can be found for any other orientation by the transformation we
have just described. In other words, the dielectric property of a crystal is described
completely by giving the components of the polarization tensor «,, with respect
to any arbitrarily chosen set of axes. Just as we can associate a vector velocity
v = (v, vy, vz) With a particle, knowing that the three components will change
in a certain definite way 1f we change our coordinate axes, so with a crystal we
associate 1ts polarization tensor «,;, whose nine components will transform in a
certain definite way if the coordinate system is changed.

The relauon between P and E wrnitten in Eq. (31.4) can be put mn the more
compact notation:

P, = Z auE]» (315)
7

where it is understood that J represents either x, y, or z and that the sum 1s taken
on; = x, p, and z. Many special notations have been invented for dealing with
tensors, but each of them 1s convenient only for a limited class of problems. One
common convention is to omit the sum sign (3°) in Eq. (31.5), leaving it under-
stood that whenever the same subscript occurs twice (here 7), a sum 1s to be taken
over that index. Since we will be using tensors so little, we will not bother to
adopt any such special notations or conventions.

31-3 The energy ellipsoid

We want now to get some experience with tensors. Suppose we ask the in-
teresting question: What energy is required to polarize the crystal (in addition to
the energy in the electric field which we know 1s €, £2/2 per unit volume)? Consider
for a moment the atomic charges that are being displaced. The work done in dis-
placing the charge the distance dx is ¢E, dx, and if there are N charges per umt
volume, the work done is gE,N dx. But gN dx 1s the change dP, in the dipole
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moment per unit volume. So the energy required per unit volume is
E.dP,.

Combining the work for the three components of the field, the work per unit
volume is found to be
E-dP.

Since the magnitude of P is proportional to E, the work done per unit volume in
bringing the polarization from 0 to P is the integral of E - dP. Calling this work
up,* we write

[

up = 3E-P = Y EP,. (31.6)

Now we can express P in terms of E by Eq. (31.5), and we have that
up = 3y > a,EE, (31.7)
Q 7

The energy density up 1s a number independent of the choice of axes, so it is a
scalar. A tensor has then the property that when it is summed over one index
(with a vector), it gives a new vector; and when it is summed over both indexes
(with two vectors), it gives a scalar.

The tensor «,, should really be called a “tensor of second rank,” because it
has two indexes. A vector-—with one index—is a tensor of the first rank, and a
scalar—with no index—is a tensor of zero rank. So we say that the electric field
E is a tensor of the first rank and that the energy density up is a tensor of zero
rank. It is possible to extend the ideas of a tensor to three or more indexes, and
so to make tensors of ranks higher than two.

The subscripts of the polarization tensor range over three possible values—
they are tensors in three dimensions. The mathematicians consider tensors in
four, five, or more dimensions. We have already used a four-dimensional tensor
F,, in our relativistic description of the electromagnetic field (Chapter 26).

The polarization tensor «,, has the interesting property that it is symmetric,
that is, that o, = @,,, and so on for any pair of indexes. (This is a physical
property of a real crystal and not necessary for all tensors.) You can prove for
yourself that this must be true by computing the change in energy of a crystal
through the following cycle: (1) Turn on a field in the x-direction; (2) turn on a
field in the y-direction; (3) turn off the x-field; (4) turn off the p-field. The crystal
is now back where it started, and the net work done on the polarization must be
back to zero. You can show, however, that for this to be true, a,, must be equal
to ay,. The same kind of argument can, of course, be given for a,,, etc. So the
polarization tensor is symmetric.

This also means that the polarization tensor can be measured by just measuring
the energy required to polarize the crystal in various directions. Suppose we apply
an E-field with only an x- and a y-component; then according to Eq. (31.7),

up = % [auEi + (axy + ay:c)EzEy + Ofnyg?]- (31.8)

With an E, alone, we can determine «,,; with an E, alone, we can determine a,,;
with both E, and E,, we get an extra energy due to the term with (a,, + ay.).
Since the «,, and «,, are equal, this term is 2a,, and can be related to the energy.

The energy expression, Eq. (31.8), has a nice geometric interpretation.
Suppose we ask what fields E, and E, correspond to some given energy density—say
ug. That is just the mathematical problem of solving the equation

azoE; + 205, EE, + oy, EX = 2uq.

This is a quadratic equation, so if we plot E, and E,, the solutions of this equation

* This work done i producing the polarization by an electric field is not to be confused
with the potential energy — po-E of a permanent dipole moment pg.
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are all the points on an ellipse (Fig. 31-2). (It must be an ellipse, rather than a
parabola or a hyperbola, because the energy for any field is always positive and
finite.) The vector E with components E, and E, can be drawn from the origin
to the ellipse. So such an “energy ellipse” is a nice way of “visualizing” the polar-
ization tensor.

If we now generalize to include all three components, the electric vector E in
any direction required to give a unit energy density gives a point which will be on
the surface of an ellipsoid, as shown in Fig. 31-3. The shape of this ellipsoid of
constant energy uniquely characterizes the tensor polarizability.

Now an ellipsoid has the nice property that it can always be described simply
by giving the directions of three “principal axes” and the diameters of the ellipse
along these axes. The ‘‘principal axes” are the directions of the longest and
shortest diameters and the direction at right angles to both. They are indicated
by the axes a, b, and ¢ in Fig. 31-3. With respect to these axes, the ellipsoid has
the particularly simple equation

2 2 2
aaaEu + abhEb + CVcc‘Et: = 2uO-

So with respect to these axes, the dielectric tensor has only three components
that are not zero: a,q, ap, and «,, That is to say, no matter how complicated a
crystal is, it is always possible to choose a set of axes (not necessarily the crystal
axes) for which the polarization tensor has only three components. With such a
set of axes, Eq. (31.4) becomes simply

P, = as.FE,, Py = apkE, P, = a.kE,. (319)

An electric field along any one of the principal axes produces a polarization along
the same axis, but the coeflicients for the three axes may, of course, be different.

Often, a tensor is described by listing the nine coefficients in a table inside of
a pair of brackets:

(¢ 27 Oy Qgz
Oy Ay ayz |- (31.10)
[ 727 gy Qzz

For the principal axes a, b, and ¢, only the diagonal terms are not zero; we say
then that “the tensor is diagonal.” The complete tensor is

Qg 0 0
0 app 0 |- (31.11)
0 0 e

The important point is that any polarization tensor (in fact, any symmetric tensor
of rank two in any number of dimensions) can be put in this form by choosing a
suitable set of coordinate axes.
If the three elements of the polarization tensor in diagonal form are all equal,
that is, if
Qagq = OQph = Qe = &, (3112)

the energy ellipsoid becomes a sphere, and the polarizability is the same in all
directions. The material is isotropic. In the tensor notation,

a;, = ab,, (31.13)
where §,, is the unit tensor
1 o 0
6, =10 1 of- (31.149)
0 o0 1

That means, of course,
6, = 1, if i=j;
6, =0, if i GLI5)
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The tensor §;, is often called the “Kronecker delta.” You may amuse yourself
by proving that the tensor (31.14) has exactly the same form if you change the
coordinate system to any other rectangular one. The polarization tensor of Eq.
(31.13) gives

P, = zxz 6, ,E, = aF,,
3

which means the same as our old result for isotropic dielectrics:
P = oF.

The shape and orientation of the polarization ellipsoid can sometimes be
related to the symmetry properties of the crystal. We have said in Chapter 30
that there are 230 different possible internal symmetries of a three-dimensional
lattice and that they can, for many purposes, be conveniently grouped 1nto seven
classes, according to the shape of the unit cell. Now the ellipsoid of polarizability
must share the internal geometric symmetries of the crystal. For example, a
trichinic crystal has low symmetry—the ellipsoid of polarizability will have unequal
axes, and its orientation will not, in general, be aligned with the crystal axes. On
the other hand. a monoclinic crystal has the property that its properties are un-
changed if the crystal is rotated 180° about one axis. So the polarization tensor
must be the same after such a rotation. It follows that the ellipsoid of the polariz-
ability must return to itself after a 180° rotation. That can happen only if one of
the axes of the ellipsoid is in the same direction as the symmetry axis of the crystal.
Otherwise, the orientation and dimensions of the ellipsoid are unrestricted

For an orthorhombic crystal, however, the axes of the ellipsoid must corre-
spond to the crystal axes, because a 180° rotation about any one of the three axes
repeats the same lattice. If we go to a tetragonal crystal, the ellipse must have the
same symmetry, so it must have two equal diameters. Finally. for a cubic crystal,
all three diameters of the ellipsoid must be equal, it becomes a sphere, and the
polarizability of the crystal is the same in all directions.

There is a big game of figuring out the possible kinds of tensors for all the
possible symmetries of a crystal. It is called a “group-theoretical” analysis. But
for the simple case of the polarizability tensor, it 1s relatively easy to see what the
relations must be.

31-4 Other tensors; the tensor of inertia

There are many other examples of tensors appearing 1n physics. For example,
in a metal, or in any conductor, one often finds that the current density j is ap-
proximately proportional to the electric field E; the proportionality constant is
called the conductivity o':

j = oE.

For crystals, however, the relation between j and E is more complicated; the
conductivity is not the same in all directions. The conductivity 1s a tensor, and

we write
Jo = ZUMEJ-

Another example of a physical tensor is the moment of inertia. In Chapter 18
of Volume I we saw that a solid object rotating about a fixed axis has an angular
momentum L proportional to the angular velocity w, and we called the proportion-
ality factor 7, the moment of inertia:

L = Jw.

For an arbitrarily shaped object, the moment of inertia depends on 1ts orientation
with respect to the axis of rotation. For instance, a rectangular block will have
different moments about each of its three orthogonal axes. Now angular velocity
w and angular momentum L are both vectors. For rotations about one of the axes
of symmetry, they are parallel. But if the moment of inertia is different for the
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three principal axes, then w and L are, in general, not in the same direction
(see Fig. 31-4). They are related in a way analogous to the relation between
E and P. In general, we must write

L, = L,w, + I:cywy + L.,
Ly = Lyw, + Iyywy + Iy.w., (31.16)
L, = L,w, + [zywy + L.w,.

The nine coefficients /7,, are called the tensor of inertia. Following the analogy
with the polarization, the kinetic energy for any angular momentum must be
some quadratic form in the components w,, w,, and w,:

KE = £ > Lww, (31.17)
k¥

We can use the energy to define the ellipsoid of inertia. Also, energy arguments
can be used to show that the tensor is symmetric—that /,, = [,,.

The tensor of inertia for a rigid body can be worked out if the shape of the
object is known. We need only to write down the total kinetic energy of all the
particles in the body. A particle of mass m and velocity v has the kinetic energy
imy?, and the total kinetic energy is just the sum

5

over all of the particles of the body. The velocity v of each particle is related to
the angular velocity w of the solid body. Let’s assume that the body 1s rotating
about its center of mass, which we take to be at rest. Then if r is the displacement
of a particle from the center of mass, its velocity v is given by w X r. So the total

kinetic energy is
KE = > im(w X r)°. (31.18)

Now all we have to do 1s write w X r out in terms of the components w,, w,, w,,
and x, y, z, and compare the result with Eq. (31.17); we find /,, by identifying
terms. Carrying out the algebra, we write

(X1 = (X +(@Xnr;+ (@Xr)?

= (wﬂz - wz}’)2 + (wzx - w:rz)z ‘JF (O)ry — (J),’X)J

I

2_2 22
+ w,z° — 2ww,zy + wy

2.2 2
4+ w’x? — 2w,w,x2 4 wiz?

+ wﬁyz — 2wywyx + w§x2.
Multiplymng this equation by m/2, summng over all particles, and comparing
with Eq. (31.17), we see that /.., for instance, is given by

L. = Z m(y2 + 22)'

This is the formula we have had before (Chapter 19, Vol. I) for the moment of
mertia of a body about the x-axis. Since r? = x2 + y% + z%, we can also write
this term as

I, = Z m(r® — x?).

Working out all of the other terms, the tensor of inertia can be written as

S m@r? — x?) — 3 mxy — ¥ mxz
I, = — 3 myx > m(r? — y?) — S myz |- (31.19)
— > mzx — 3 mzy Y m(r? - z%)
If you wish, this may be written in “tensor notation’ as
1, = Y m(r? 8, — ru)), (31.20)
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where the r, are the components (x, y, z) of the position vector of a particle and
the 3~ means to sum over all the particles. The moment of inertia, then, is a tensor
of the second rank whose terms are a property of the body and relate L to w by

L, =) 1w, (3121)
J

For a body of any shape whatever, we can find the ellipsoid of inertia and,
therefore, the three principal axes. Referred to these axes, the tensor will be
diagonal, so for any object there are always three orthogonal axes for which the
angular velocity and angular momentum are parallel They are called the principal
axes of inertia.

31-5 The cross product

We should point out that we have been using tensors of the second rank
since Chapter 20 of Volume I. There, we defined a “torque 1n a plane,” such as
Ty DY

Tey = XF, — yF,.

Generalized to three dimensions, we could write
T, = nF, — rF,. (31.22)

The quantity 7., is a tensor of the second rank. One way to see that this is so 1s by
combining 7,, with some vector, say the unit vector e, according to

E T1;€,.
J

If this quantity 1s a vector, then ,, must transform as a tensor—this is our definition
of a tensor. Substituting for 7,,, we have

E Tye; = E r.Fe, — E re, F,
7

J J
= r(F-e)y — (r e)F,.

Since the dot products are scalars, the two terms on the right-hand side are vectors,
and likewsse their difference. So 7,, 15 a tensor.
But 7,, 1s a special kind of tensor: it is antispmmerric, that is,

Ty = —Ths

so it has only three nonzero terms—r,,. 7,., and 7,,. We were able to show in
Chapter 20 of Volume I that these three terms, almost **by accident,” transform
like the three components of a vector, so that we could defme

T = (Tra Tys Tz) = (Tyzg Tzrs T.I"/)

We say “‘by accident,” because it happens only in three dimensions. In four
dimensions, for instance, an antisymmetric tensor of the second rank has six
nonezero terms and certainly cannot be replaced by a vector with four components.

Just as the axial vector r = r X F 15 a tensor, so also is every cross product
of two polar vectors—all the same arguments apply. By luck, however, they are
also representable by vectors (really pseudovectors), so our mathematics has been
made easier for us.

Mathematically, if @ and b are any two vectors, the nine quantities a,b, form
a tensor (although it may have no useful physical purpose). Thus, for the position
vector r,, rr; is a tensor, and since §,, 1s also, we see that the right side of Eq.
(31 20) 15 indeed a tensor. Likewise Eq (31.22) is a tensor, since the two terms on
the right-hand side are tensors.
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31-6 The tensor of stress

The symmetric tensors we have described so far arose as coefficients in re-
lating one vector to another. We would like to look now at a tensor which has a
different physical significance—the tensor of stress. Suppose we have a sohd
object with various forces on it. We say that there are various “stresses” inside,
by which we mean that there are internal forces between neighboring parts of the
material. We have talked a little about such stresses in a two-dimensional case
when we considered the surface tension in a stretched diaphragm in Section
12-3. We will now see that the internal forces in the material of a three-dimensional
body can be described in terms of a tensor.

Consider a body of some elastic material—say a block of jello. If we make
a cut through the block, the material on each side of the cut will, in general. get
displaced by the internal forces. Before the cut was made, there must have been
forces between the two parts of the block that kept the material in place; we can
define the stresses in terms of these forces. Suppose we look at an imaginary plane
perpendicular to the x-axis—like the plane ¢ in Fig 31-5—and ask about the force
across a small area Ay Az in this plane The material on the left of the area exerts
the force AF; on the material to the right, as shown in part (b) of the figure
There 1s, of course, the opposite reaction force —AF; exerted on the material to
the left of the surface. If the area 1s small enough, we expect that AF 1s propor-
tional to the area Ay Az.

You are already familiar with one kind of stress—the pressure 1n a static
hquid. There the force 1s equal to the pressure times the area and 1s at right angles
to the surface element. For solids—also for viscous hquids in motion—the force
need not be normal to the surface; there are shear forces in addition to pressures
(positive or negative) (By a “‘shear” force we mean the rangential components
of the force across a surface.) All three components of the force must be taken
into account. Notice also that if we make our cut on a plane with some other
orientation, the forces will be different. A complete description of the internal
stress requires a tensor.

AFy'

<9

e
=
_‘n

7
\

(b)

Fig 31-5. The matenal to the left of
the plane ¢ exerts across the area
Ay Az the force AF, on the material to
the right of the plane.

A Fig. 31-6. The force AF, across an
vV Az element of area Ay Az perpendicular to
AF,, W the x-axis is resolved into the three

We define the stress tensor in the following way: First, we imagine a cut
perpendicular to the x-axis and resolve the force AF,; across the cut into its com-
ponents AF,;, AF, |, AF,;, as in Fig. 31-6. The ratio of these forces to the area
Ay Az, we call S,,, S,., and S;,. For example,

_ ARy
YT Ay Az

The first index y refers to the direction force component; the second index x is
normal to the area. If you wish, you can write the area Ay Az as Aa,, meaning an
element of area perpendicular to x. Then

AF,
Sya: = Aayl .

Next, we think of an imaginary cut perpendicular to the y-axis. Across a small
31-9
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AFy, [\

AF,

AF,,

Fig. 31-7.
ment of area perpendicular to y is re-
solved into three rectangular components

The force across an ele-

AFyn
o AF,
P aF,
s
Ay . //// AFyn
s OFzn My
Ax
Fig. 31-8. The force F, across the

face N (whose unit normal is n) is resolved
into components.

area Ax Az there will be a force AF,. Again we resolve this force into three com-
ponents, as shown 1n Fig 31-7, and define the three components of the stress,
Sz Syus Sz, as the force per unit area in the three directions. Finally, we make an
imaginary cut perpendicular to z and define the three components S.;, S,., and S...
So we have the nine numbers

S
S, =1S. Su  Sul| (31.23)
S

2z Szz/ Szz

We want to show now that these nine numbers are sufficient to describe com-
pletely the internal state of stress. und that S,, 1s indeed a tensor Suppose we want
to know the force across a surface oriented at some arbitrary angle Can we find
it from S,,? Yes, n the following way: We imagine a hittle solid figure which has
one face N in the new surface, and the other faces parallel to the coordmate axes.
If the face & happened to be parallel to the z-axis, we would have the triangular
picce shown mn Fig. 31-8. (This 1s a somewhat special case, but will illustrate well
enough the general method.) Now the stress forces on the little solid tnangle n
Fig 31-8 are in equilibrium (at least in the linut of mnfinitesimal dimensions),
0 the total force on it must be zero. We know the forces on the faces parallel to
the coordinate axes directly from S,, Thewr vector sum must equal the foice on
the tace N, so we can express this force m terms of S,,.

Our assumption that the surfuce forces on the small triangular volume are in
cquilibrium neglects any other body forces that might be present, such as gravity
o1 pseudo forces if our coordinate system is not an inertial frame  Notice, however,
that such body forces will be proportional to the volume of the little trangle and,
therefore, to Ax, Ay, Az, whereas all the surface forces are proportional to the
areas such as Ax Ay, Ay Az, etc. So 1f we take the scale of the Iittle wedge small
enough, the body forces can always be neglected in comparison with the surface
forces.

Let’s now add up the forces on the little wedge. We take first the v-component,
which is the sum of five parts—one from each face However, if Az is small enough,
the forces on the triangular faces (perpendicular to the z-axis) will be equal and
opposite, so we can forget them. The x-component of the force on the bottom
rectangle is

AF,o = S,y Ax Az,

The x-component of the force on the vertical rectangle is
AF,, = S, Ay Az,

These two must be equal to the x-component of the force outward across the face
N. Let’s call n the unit vector normal to the face N, and the force on 1t F,, then
we have

AF,, = S Ay Az 4 Sy Ax Az

The x-component S, of the stress across this plane is equal to AF,, divided by

the area, which 1s A\/zAx2 + Ay2, or

A Ax

an = S,cx T L’* i + qu e
VAx? 4+ Ay? VAx? + Ay?

Now Ax/\/Ax2 + Ayp? is the cosine of the angle § between n and the y-axis, as
shown in Fig. 31-8, so it can also be written as n,, the y-component of n. Simularly,
Ay/NAx2 + ApZissm 6 = n,. We can write
S:tn = Ol + Styny-
If we now generalize to an arbitrary surface element, we would get that
Sz'n = Ozzllz + Szyny + sznz
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or, in general,
S = 2 Sun,. (31.24)
2

We can find the force across any surface element in terms of the S,,, so it does
describe completely the state of internal stress of the material.

Equation (31 24) says that the tensor S,, relates the force §,, to the unit vector
n, just as «,, relates P to E. Since n and .S, are vectors, the components of S,, must
transform as a tensor with changes in coordinate axes. So S,, is indeed a tensor.

We can also show that S, is a symmetric tensor by looking at the forces on a
Ittle cube of material. Suppose we take a little cube, oriented with its faces parallel
to our coordinate axes, and look at it in cross section, as shown in Fig 31-9. If
we let the edge of the cube be one unit, the x- and y-components of the forces on
the faces normal to the x- and y-axes might be as shown in the figure. If the cube
is small, the stresses do not change appreciably from one side of the cube to the
oppostte side, so the force components are equal and opposite as shown Now
there must be no torque on the cube, or it would start spinning. The total torque
about the center is (S,; — S,,) (times the unit edge of the cube), and since the
total is zero, S, is equal to S,,, and the stress tensor is symmetric.

Since §,, is a symmetric tensor, 1t can be described by an ellipsoid which will
have three principal axes. For surfaces normal to these axes, the stresses are
particularly ssmple—they correspond to pushes or pulls perpendicular to the sur-
faces There are no shear forces along these faces. For any stress, we can always
choose our axes so that the shear components are zero. If the ellipsoid 1s a sphere,
there are only normal forces in any direction. This corresponds to a hydrostatic
pressure (positive or negative). So for a hydrostatic pressure, the tensor is diagonal
and all three components are equal; they are, in fact, just equal to the pressure p.
We can write

S, = P, (31.25)

The stress tensor—and also its ellipsoid—will, in general, vary from point to
point 1n a block of material; to describe the whole block we need to give the value
of each component of S,, as a function of position. So the stress tensor 1s a field.
We have had scalar fields, like the temperature T(x, y, z), which give one number
for each pomnt in space, and vector fields like E(x, y, z), which give three numbers
for each point. Now we have a ftensor field which gives nine numbers for each
point 1n space—or really six for the symmetric tensor S,;. A complete description
of the internal forces in an arbitrarily distorted solid requires six functions of
x, y, and z.

31-7 Tensors of higher rank

The stress tensor S, describes the mnternal forces of matter. If the material 1s
elastic, 1t is convenient to describe the internal distortion in terms of another tensor
T,,—called the strain tensor. For a simple object like a bar of metal, you know
that the change in length, AL, 1s approximately proportional to the force, so we
say 1t obeys Hooke’s law:

AL = 7F.

For a solid elastic body with arbitrary distortions, the strain 7', 1s related to the
stress S,, by a set of linear equations:

T = D VoS (31.26)
k,l

Also, you know that the potential energy of a spring (or bar) is
LFAL = LvF2
The generalization for the elastic energy density in a solid body is

Uelastlc = Z %’yulez]Skl- (3]27)

13kl
31-11

Syy
Syx
Say
L~
S /
//////// Sxx
Sxy
SyxY
Syy

Fig. 31-9. The x- and y-forces on
four faces of a small unit cube.



The complete description of the elastic properties of a crystal must be given in
terms of the coefficients ¥,,,;. This introduces us to a new beast. It is a tensor of the
Sourth rank. Since each index can take on any one of three values, x, y, or z, there
are 3* = 81 coefficients. But there are really only 21 different numbers. First,
since S,, is symmetric, it has only six different values, and only 36 different co-
efficients are needed in Eq. (31.27). But also, S,, can be interchanged with Sy,
without changing the energy, so 7,,;; must be symmetric if we interchange ij
and kl. This reduces the number of different coefficients to 21. So to describe the
elastic properties of a crystal of the lowest possible symmetry requires 21 elastic
constants! This number 1s, of course, reduced for crystals of higher symmetry.
For example, a cubic crystal has only three elastic constants, and an isotropic
substance has only two.

That the latter is true can be seen as follows How can the components of
Y., be independent of the direction of the axes, as they must be if the material
is isotropic? Answer.: They can be independent only if they are expressible in terms
of the tensor §,,. There are two possible expressions, §8,,6r; and 8,,6,; + 6,16,4,
which have the required symmetry, so 7,,,; must be a linear combination of them.
Therefore, for isotropic materials,

’Yz]kl = a(awakl) -+ b(alka_}l + 6zl5]k),

and the material requires two constants. ¢ and b. to describe 1ts elastic properties.
We will leave 1t for you to show that a cubic crystal needs only three
As a final example, this time of a third-rank tensor, we have the piezoelectric
effect. Under stress, a crystal generates an electric field proportional 1o the stress;
hence, in general, the law is
E, = Z P xS,
1.k

where E, is the electric field, and the P,,;, are the piezoelectric coefficients—or the
piezoelectric tensor Can you show that 1f the crystal has a center of inversion
(mmvariant under x, y, z — —x, —y, —z) the piezoelectric coefficients are all zero?

31-8 The four-tensor of electromagnetic momentum

All the tensors we have looked at so far in this chapter relate to the three
dimensions of space; they are defined to have a certain transformation property
under spatial rotations. In Chapter 26 we had occasion to use a tensor n the four
dumensions of relativistic space-time—the electromagnetic field tensor F,, The
components of such a four-tensor transform under a Lorentz transformation of
the coordinates in a special way that we worked out. (Although we did not do it
that way, we could have considered the Lorentz transformation as a “rotation”
in a four-dimensional “space” called Minkowski space; then the analogy with what
we are doing here would have been clearer )

As our last example, we want to consider another tensor 1n the four dimensions
(¢, x, y, z) of relativity theory. When we wrote the stress tensor, we defined S,
as a component of a force across a umt area. But a force 1s equal to the time
rate of change of a momentum. Therefore, instead of saying *‘S,, is the x-compon-
ent of the force across a unit area perpendicular to y,”” we could equally well say,
“S.y 1s the rate of flow of the x-component of momentum through a unit area
perpendicular to y.” In other words, each term of S,, also represents the flow of
the -component of momentum through a unit area perpendicular to the j-direction
These are pure space components, but they are parts of a “larger” tensor S,, 1n
four dimensions (u and v = ¢, x, p, z) containing additional components like
Stz Syt Su, etc. We will now try to find the physical meaning of these extra
components.

We know that the space components represent flow of momentum. We can
get a clue on how to extend this to the time dimension by studying another kind of
“flow”—the flow of electric charge. For the scalar quantity, charge, the rate of
flow (per unit area perpendicular to the flow) is a space vector—the current density
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vector j. We have seen that the time component of this flow vector is the density
of the stuff that is flowing For instance, j can be combined with a time component,
Ji = p, the charge density, to make the four-vector j, = (p,j); that is, the u 1n
J. takes on the values 1, x, y, z to mean ‘‘density, rate of flow 1n the x-direction,
rate of flow in y, rate of flow in z” of the scalar charge.
Now by analogy with our statement about the time component of the flow of
a scalar quantity, we might expect that with S.,, S.,, and S,., describing the flow
of the x-component of momentum, there should be a time component S,;, which
would be the density of whatever 1s flowing; that 1s, S;, should be the density of
x-momentum. So we can extend our tensor horizontally to include a -component
We have
Syt = density of x-momentum,

S, = x-flow of x-momentum,
Sy, = y-flow of x-momentum,

S,. = z-flow of x-momentum.

Similarly, for the y-component of momentum we have the three components of
flow—S,;, Syys S,.—to which we should add a fourth term:

S,: = density of y-momentum.
And, of course, to S.;, Sy, S:. we would add
S, = density of z-momentum.

In four dimensions there is also a f-component of momentum, which is, we
know, energy So the tensor S,, should be extended vertically with Sy, S;,, and
S;., where

7
8
i

x-flow of energy,

&
<
I

y-flow of energy, (31.28)

Sy = z-flow of energy;

that is, Sy, is the flow of energy per unit area and per unit time across a surface
perpendicular to the x-axis, and so on. Finalily, to complete our tensor we need
Sy, which would be the density of energy. We have extended our stress tensor
S,, of three dimensions to the four-dimensional stress-energy tensor S,,. The
index p can take on the four values ¢, x, y, and z, meaning, respectively, “density,”
“flow per umt area in the x-direction,” “flow per unit area in the y-direction,”
and “flow per unit area in the z-directton ” In the same way, v takes on the four
values 1, x, p, z to tell us what flows, namely, “energy,” “momentum in the x-direc-
tion,” “momentum 1n the y-direction,” and “momentum n the z-direction.”

As an example, we will discuss this tensor not in matter, but in a region of free
space 1n which there is an electromagnetic field. We know that the flow of energy 1s
the Poynting vector S = e,c?E X B. So the x-, y-, and z-components of S are,
from the relativistic pomt of view, the components S,., Si,, and S;, of our four-
dimensional stress-energy tensor. The symmetry of the tensor S,, carries over into
the time components as well, so the four-dimensional tensor S,, is symmetric:

S = Sy (31.29)

In other words, the components S, S,;, Sz, which are the densities of x, p, and
z momentum, are also equal to the x-, y-, and z-components of the Poynting vector
S, the energy flow—as we have already shown in an earlier chapter by a different
kind of argument.

The remaining components of the electromagnetic stress tensor S,, can also
be expressed in terms of the electric and magnetic fields E and B That is to say,
we must admit stress or, to put it less mysteriously, flow of momentum 1n the
electromagnetic field We discussed this in Chapter 27 in connection with Eq
(27.21), but did not work out the details

31-13



Those who want to exercise their prowess in tensors in four dimensions might
like to see the formula for S,, 1n terms of the fields:

SMV = fzp (Z FM“F”" - 7} O 2 FﬂaFﬂa) ’
a a8

where sums on «, 3 are on ¢, x, y, z but (as usual in relativity) we adopt a special
meaning for the sum sign > and for the symbol §. In the sums the x, y, z terms
are to be subtracted and §,; = +1, while 6, = 6, = 6, = —1 and 6, = 0
for uw % v (¢ = 1). Can you verify that it gives the energy density S; =
(e0/2) (E? + B?) and the Poynting vector ¢xE X B? Can you show that in an
electrostatic field with B = 0 the principal axes of stress are 1n the direction of the
electric field, that there is a fension (e,/2)E? along the direction of the field, and that
there is an equal pressure 1 directions perpendicular to the field direction?
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