27

Field Energy and Field Momentum

27-1 Local conservation

It is clear that the energy of matter is not conserved. When an object radiates
light it Joses energy. However, the energy lost is possibly describable in some other
form, say in the light. Therefore the theory of the conservation of energy 1s
incomplete without a consideration of the energy which is associated with the light
or, in general, with the electromagnetic field. We take up now the law of conserva-
tion of energy and, also, of momentum for the fields. Certainly, we cannot treat
one without the other, because in the relativity theory they are different aspects of
the same four-vector.

Very early in Volume I, we discussed the conservation of energy; we said
then merely that the total energy in the world is constant. Now we want to extend
the idea of the energy conservation law in an important way—in a way that says
something in derail about how energy is conserved. The new law will say that 1f
energy goes away from a region, it is because it flows away through the boundaries
of that region. It is a somewhat stronger law than the conservation of energy
without such a restriction.

To see what the statement means, let’s look at how the law of the conservation
of charge works. We described the conservation of charge by saying that there is
a current density j and a charge density p, and that when the charge decreases at
some place there must be a flow of charge away from that place. We call that the
conservation of charge. The mathematical form of the conservation law is
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This law has the consequence that the total charge in the world is always constant—
there 1s never any net gain or loss of charge. However, the total charge in the
world could be constant in another way. Suppose that there is some charge Q,
near some pomt (1) while there is no charge near some point (2) some distance
away (Fig. 27-1). Now suppose that, as time goes on, the charge Q; were to
gradually fade away and that simultaneously with the decrease of @, some charge
Q, would appear near point (2), and in such a way that at every instant the sum of
Q, and Q, was a constant. In other words, at any intermediate state the amount
of charge lost by Q; would be added to Q.. Then the total amount of charge in
the world would be conserved. That’s a “world-wide” conservation, but not what
we will call a “local” conservation, because in order for the charge to get from
(1) to (2). it didn’t have to appear anywhere in the space between pomnt (1) and

point (2). Locally, the charge was just “lost.”

There is a difficulty with such a “world-wide” conservation law in the theory
of relativity. The concept of “‘simultaneous moments™ at distant points is one which
is not equivalent in different systems. Two events that are simultaneous in one
system are not stmultaneous for another system moving past. For “world-wide”
conservation of the kind described, it is necessary that the charge lost from @,
should appear simultaneously in Q5. Otherwise there would be some moments
when the charge was not conserved. There seems to be no way to make the
law of charge conservation relativistically invariant without making it a “local”
conservation law. As a matter of fact, the requirement of the Lorentz relativistic
invariance seems to restrict the possible laws of nature in surprising ways. In
modern quantum field theory, for example, people have often wanted to alter the
theory by allowing what we call a “nonlocal” interaction—where something here
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has a direct effect on something there—but we get in trouble with the relativity
principle.

“Local” conservation involves another idea. It says that a charge can get
from one place to another only if there 1s something happening in the space between.
To describe the law we need not only the density of charge, p, but also another
kind of quantity, namely j, a vector giving the rate of flow of charge across a
surface. Then the flow is related to the rate of change of the density by Eq. (27.1).
This 1s the more extreme kind of a conservation law. It says that charge is con-
served in a special way—conserved “locally.”

It turns out that energy conservation is also a Jocal process. There 1s not only
an energy density in a given region of space but also a vector to represent the rate
of flow of the energy through a surface. For example, when a light source radiates,
we can find the hight energy moving out from the source. If we imagine some mathe-
matical surface surrounding the light source, the energy lost from inside the surface
is equal to the energy that flows out through the surface.

27-2 Energy conservation and electromagnetism

We want now to write quantitatively the conservation of energy for electro-
magnetism. To do that, we have to describe how much energy there is 1n any
volume element of space, and also the rate of energy flow. Suppose we think first
only of the electromagnetic field energy. We will let u represent the energy density
in the field (that is, the amount of energy per umit volume 1n space) and let the
vector S represent the energy flux of the field (that 1s, the flow of energy per unit
time across a unit area perpendicular to the flow). Then, in perfect analogy with
the conservation of charge, Eq (27 1), we can write the “local” law of energy
conservation in the field as
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Of course, this law 1s not true in general; it 1s not true that the field energy is
conserved. Suppose you are in a dark room and then turn on the hight switch. All
of a sudden the room is full of light, so there is energy 1n the field, although there
wasn’t any energy there before. Equation (27.2) is not the complete conservation
law, because the field energy alone is not conserved, only the total energy in the
world—there is also the energy of matter. The field energy will change 1f there 1s
some work being done by matter on the field or by the field on matter

However, if there is matter inside the volume of interest, we know how much
energy it has: Each particle has the energy m,c?/A/1 — v2/c2. The total energy
of the matter is just the sum of all the particle energies, and the flow of this energy
through a surface is just the sum of the energy carried by each particle that crosses
the surface We want now to talk only about the energy of the electromagnetic
field. So we must write an equation which says that the total field energy in a given
volume decreases either because field energy flows out of the volume or because
the field loses energy to matter (or gains energy, which 1s just a negative loss).
The field energy inside a volume V is

f udyV,
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and its rate of decrease is minus the time derivative of this integral. The flow of
field energy out of the volume V 1s the integral of the normal component of .S over
the surface = that encloses V,
/ S - nda.
b
a

—a dVv = / S - nda + (work done on matter inside V). (27.3)
Jv S

So
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We have seen before that the field does work on each unit volume of matter
at the rate E-j. [The force on a particle is F = g(E + v X B), and the rate of
doing work is F-v = gE - v. If there are N particles per unit volume, the rate of
doing work per unit volume is NgE - v, but Ngqv = j ] So the quantity E - j must
be equal to the loss of energy per unit time and per umt volume by the field.
Equation (27.3) then becomes

~f9—/ udV=/s~nda+/E-jdV. (27.4)
at Jv 2 4

This is our conservation law for energy in the field. We can convert it into a
differential equation like Eq. (27.2) if we can change the second term to a volume
integral That is easy to do with Gauss’ theorem. The surface integral of the
normal component of S is the integral of 1ts divergence over the volume inside.
So Eq. (27.3) is equivalent to

_ @dv=/ V~SdV+/E~jdV,
v dt v v

where we have put the time derivative of the first term inside the integral. Since
this equation 1s true for any volume, we can take away the integrals and we have
the energy equation for the electromagnetic fields:

_ ¥ .S+ E.j (1.5
at

Now this equation doesn’t do us a bit of good unless we know what u and §
are. Perhaps we should just tell you what they are in terms of E and B, because
all we really want is the result. However, we would rather show you the kind of
argument that was used by Poynting in 1884 to obtain formulas for § and u, so
you can see where they come from. (You won’t, however, need to learn this de-

rivation for our later work.)

27-3 Energy density and energy flow in the electromagnetic field

The 1dea 15 to suppose that there is a field energy density v and a flux .S that
depend only upon the fields E and B. (For example, we know that in electrostatics,
at least, the energy density can be written eoE - E.) Of course, the u and § nught
depend on the potentials or something else, but let’s see what we can work out
We can try to rewrite the quantity E - j in such a way that it becomes the sum of
two terms. one that 1s the time derivative of one quantity and another that 1s the
divergence of a second quantity. The first quantity would then be v and the second
would be S (with surtable signs). Both quantities must be written 1n terms of the
fields only: that 1s, we want to write our equality as

E-]z—E—V-S. (27.6)
The left-hand side must first be expressed in terms of the fields only. How
can we do that? By using Maxwell’s equations, of course. From Maxwell’s
equation for the curl of B,
, oE
J = €0C2V X B — GOE'

Substituting this 1in (27 6) we will have only E’s and B’s:

E-j = €c®E-(V X B) — eOE-%‘? 271.7)
We are already partly finished. The last term is a time derivative—it is
(3/01)(%eoE - E). So %eoE - E 1s at least one part of u. It’s the same thing we
found in electrostatics. Now, all we have to do is to make the other term into the
divergence of something.
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Notice that the first term on the right-hand side of (27.7) 1s the same as
(Vv X B)E. (27.8)

And, as you know from vector algebra, (a X b) c is the same as a- (b X ¢);
so our term is also the same as

v (B X E) (27.9)

and we have the divergence of “something,” just as we wanted. Only that’s
wrong! We warned you before that v 1s “like” a vector, but not “exactly”™ the
same. The reason it is not 1s because there 1s an addittonal convention from cal-
culus: when a derivative operator 1s in front of a product, it works on everything
to the right. In Eq (27.7), the V operates only on B, not on E But in the form
(27 9), the normal convention would say that ¥ operates on both B and E  So
1t’s not the same thing In fact, 1f we work out the components of v - (B X E)
we can see that 1t 1s equal to E - (V X B) plus some other terms. It’s like what
happens when we take a derivative of a product in algebra For instance,

d _df dg
;];(fg)—ag‘FfEE

Rather than working out all the components of Vv - (B X E), we would like
to show you a trick that 1s very useful for this kind of problem. It s a trick that
allows you to use all the rules of vector algebra on expressions with the v operator,
without getting 1nto trouble The trick 1s to throw out—for a while at least—the
rule of the calculus notation about what the derivative operator works on  You
see, ordmarily, the order of terms 1s used for nvo separate purposes. One 1s for
calculus: f(d/dx)g 1s not the same as g(d/dx)f; and the other 1s for vectors:
a X bisdifferent from & X a. We can, if we want, choose to abandon mementarily
the calculus rule. Instead of saying that a derivative operates on everything to the
right, we make a new rule that doesn’t depend on the order in which terms are writ-
ten down Then we can juggle terms around without worrying

Here is our new convention. we show, by a subscript, what a differential op-
erator works on; the arder has no meaning. Suppose we let the operator D stand
for 9/ox. Then D; means that only the derivative of the variable quantity f 1s
taken. Then

af
Dif = 3%

D;fg = (%ﬁ) g

But notice now that according to our new rule, / D,g means the same thing We
can write the same thing any which way.

Dsfg = gD;f = fD;g = fg D;.

You see, the D, can even come after everything. (It’s surprising that such a handy
notation is never taught in books on mathematics or physics.)

You may wonder: What if I wanr to write the derivative of fg? [ want the
derivative of both terms. That’s easy, you just say so; you write D,(fg) + D, (fg).
That 1s just g(3f/dx) + f (dg/dx), which 1s what you mean in the old notation by
a(fg)/ox.

You will see that 1t is now going to be very easy to work out a new expression
for v - (B X E). We start by changing to the new notation; we write

But if we have D fg, 1t means

V-(BXE)="vVy (BXE)+ Vg (B X E). (27.10)

The moment we do that we don’t have to keep the order straight any more We
always know that Vv operates on E only, and Vp operates on B only In these
circumstances, we can use V as though it were an ordinary vector. (Of course,
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when we are finished, we will want to return to the ‘standard” notation that
everybody usually uses ) So now we can do the various things like interchanging
dots and crosses and making other kinds of rearrangements of the terms. For
instance, the middle term of Eq. (27.10) can be rewritten as E- Vg X B. (You
remember that - b X ¢ = b-¢ X a.) And the last term is the same as B- E X
V. It looks freakish, but 1t is all right. Now if we try to go back to the ordinary
convention, we have to arrange that the Vv operates only on its “own’ variable.
The first one is already that way, so we can just leave off the subscript. The second
one needs some rearranging to put the v in front of the E, which we can do by
reversing the cross product and changing sign:

B-(EX Vg) = —B- (Vg X E).

Now it is in a conventional order, so we can return to the usual notation. Equation
(27.10) is equivalent to

V- BXE)=E-(VXB)—B-(V X E). Q7.11)

(A quicker way would have been to use components in this special case, but 1t
was worth taking the time to show you the mathematical trick. You probably
won’t see it anywhere else, and it is very good for unlocking vector algebra from
the rules about the order of terms with derivatives.)

We now return to our energy conservation discussion and use our new result,
Eq. (27.11), to transform the Vv X B term of Eq. (27.7). That energy equation
becomes

E-j= eV (BX E)+ e®’B-(V X E) ~ < (keoE - E) (27.12)

Now you see we’re almost finished. We have one term which is a nice derivative
with respect to 7 to use for u and another that is a beautiful divergence to represent
S. Unfortunately, there is the center term left over, which is neither a divergence
nor a derivative with respect to . So we almost made 1t, but not quite. After
some thought, we look back at the differential equations of Maxwell and discover
that V X E is, fortunately, equal to —dB/dt, which means that we can turn the
extra term into something that is a pure time derivative:

B‘(VXE)=B-(—%>= _%G%f).

Now we have exactly what we want. Our energy equation reads

E'j= vV (e?BXE) — 2

2
€oC €
at(——B B+ 7E-E), (27.13)

2

which is exactly like Eq. (27.6), if we make the definitions

2
u=%E-E+€°TcB~B (27.14)
and
= €,c?E X B. (27.15)

(Reversing the cross product makes the signs come out right.)

Our program was successful. We have an expression for the energy density
that 1s the sum of an “‘electric” energy density and a “magnetic” energy density,
whose forms are just like the ones we found in statics when we worked out the
energy in terms of the fields. Also, we have found a formula for the energy flow
vector of the electromagnetic field. This new vector, § = €y,cZE X B, is called
“Poynting’s vector,” after 1ts discoverer. It tells us the rate at which the field
energy moves around 1n space. The energy which flows through a small area da
per second is S - n da, where n is the unit vector perpendicular to da. (Now that
we have our formulas for 4 and §, you can forget the derivations if you want.)
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Fig. 27-2. The vectors E, B, and §
for a light wave.

27-4 The ambiguity of the field energy

Before we take up some applications of the Poynting formulas [Eqgs. (27.14)
and (27.15)], we would like to say that we have not really “proved” them. All
we did was to find a possible “u’ and a possible “‘S.” How do we know that by
juggling the terms around some more we couldn’t find another formula for “u”
and another formula for “$”? The new S and the new u would be different, but
they would still satisfy Eq. (27.6). It’s possible. It can be done, but the forms that
have been found always involve various derivasives of the field (and always with
second-order terms like a second derivative or the square of a first derivative).
There are, in fact, an infinite number of different possibilities for « and S, and
so far no one has thought of an experimental way to tell which one is right! People
have guessed that the simplest one is probably the correct one, but we must say
that we do not know for certain what is the actual location in space of the electro-
magnetic field energy. So we too will take the easy way out and say that the field
energy is given by Eq. (27.14). Then the flow vector § must be given by Eq. (27.15).

It is interesting that there seems to be no unique way to resolve the indefinite-
ness 1n the Jocation of the field energy. It is sometimes claimed that this problem
can be resolved by using the theory of gravitation in the following argument.
In the theory of gravity, all energy is the source of gravitational attraction. There-
fore the energy density of electricity must be located properly if we are to know in
which direction the gravity force acts. As yet, however, no one has done such a
delicate experiment that the precise location of the gravitational influence of
electromagnetic fields could be determined. That electromagnetic fields alone can
be the source of gravitational force is an idea it is hard to do without. It has, in
fact, been observed that light is deflected as it passes near the sun—we could
say that the sun pulls the light down toward it. Do you not want to allow that the
light pulls equally on the sun? Anyway, everyone always accepts the simple
expressions we have found for the location of electromagnetic energy and its flow.
And although sometimes the results obtained from using them seem strange,
noboby has ever found anything wrong with them—that is, no disagreement with
experiment. So we will follow the rest of the world—besides, we believe that it is
probably perfectly right.

We should make one further remark about the energy formula. In the first
place, the energy per unit volume in the field is very simple: It 1s the electrostatic
energy plus the magnetic energy, if we write the electrostatic energy n terms of
E* and the magnetic energy as B2 We found two such expressions as possible
expressions for the energy when we were doing static problems. We also found a
number of other formulas for the energy in the electrostatic field, such as p¢,
which is equal to the integral of E - E in the electrostatic case However, n an
electrodynamic field the equality failed, and there was no obvious choice as to
which was the right one. Now we know which is the right one. Similarly, we have
found the formula for the magnetic energy that 1s correct in general The right
formula for the energy density of dynamic fields 1s Eq (27.14)

27-5 Examples of energy flow

Our formula for the energy flow vector § is something quite new. We want
now to see how it works n some special cases and also to see whether 1t checks
out with anything that we knew before. The first example we will take is light.
In a light wave we have an E vector and a B vector at right angles to each other
and to the direction of the wave propagation. (See Fig 27-2.) In an electromag-
netic wave, the magnitude of B is equal to 1/c times the magnitude of E, and since
they are at right angles,

E‘.2
EX B = =
¢

Therefore, for light, the flow of energy per unit area per second is

S = eqcEZ (27.16)
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For a light wave in which E = Eycos w(t — x/c), the average rate of energy
flow per unit area, {S),, —which is called the ““intensity” of the light—is the mean
value of the square of the electric field times eqc:

Intensity = (S)ay = €oc(E®)ay. (27.17)

Believe it or not, we have already derived this result in Section 31-3 of Vol. I,
when we were studying light. We can believe that it is right because it also checks
against something else When we have a light beam, there is an energy density in
space given by Eq. (27.14). Using ¢B = E for a light wave, we get that

2 2
_ g2 €c (EY o
u-—2E+2(c2> GoE.

But E varies in space, so the average energy density is
(Way = €o{E)ay- (27.18)

Now the wave travels at the speed ¢, so we should think that the energy that goes
through a square meter in a second is ¢ times the amount of energy in one cubic
meter. So we would say that

(Shay = €9c{E?).\.

And it’s right; it is the same as Eq. (27.17).

Now we take another example. Here is a rather curious one. We look at the
energy flow in a capacitor that we are charging slowly. (We don’t want frequencies
so high that the capacitor is beginning to look like a resonant cavity, but we don’t
want DC either.) Suppose we use a circular parallel plate capacitor of our usual
kind, as shown 1n Fig. 27-3. There is a nearly uniform electric field inside which is
changing with time. At any instant the total electromagnetic energy inside 1s u
times the volume. If the plates have a radius @ and a separation 4, the total energy
between the plates is

U = (% E2>(7ra2h). (27.19)

This energy changes when E changes. When the capacitor is being charged, the
volume between the plates is receiving energy at the rate

%[7] = eoma’hEE. (27.20)

So there must be a flow of energy into that volume from somewhere. Of course
you know that it must come in on the charging wires—not at all! It can’t enter
the space between the plates from that direction, because E 1s perpendicular to
the plates; E X B must be parallel to the plates.

You remember, of course, that there 1s a magnetic field that circles around
the axis when the capacitor is charging. We discussed that in Chapter 23. Using
the last of Maxwell’s equations, we found that the magnetic field at the edge of the
capacitor 1s given by

27ac®B = E- wa?,
or
a -

B - '2'2 E-
Its direction 1s shown in Fig. 27-3. So there is an energy flow proportional
to E X B that comes in all around the edges, as shown in the figure. The
energy isn’t actually coming down the wires, but from the space surrounding the
capacitor.

Let’s check whether or not the total amount of flow through the whole surface
between the edges of the plates checks with the rate of change of the energy inside—
it had better; we went through all that work proving Eq. (27.15) to make sure,
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toward the axis.



Fig. 27—-4. The fields outside a capacitor
when it is being charged by bringing two
charges from a large distance.

C D

Fig. 27-5 The Poynting vector § near
a wire carrying a current.

Fig. 27-6. A charge and a magnet
produce a Poynting vector that circulates
in closed loops.

but let's see. The area of the surface 1s 2rah, and § = €,c*E X B1s in magnitude

2 a4 r
€oC E<§E§ E) s

ma’he EE.

so the total flux of energy 1s

It does check with Eq. (27.20). But it tells us a peculiar thing: that when we are
charging a capacitor, the energy is not coming down the wires; it is coming in
through the edges of the gap. That’s what this theory says!

How can that be? That’s nor an easy question, but here is one way of thinking
about it. Suppose that we had some charges above and below the capacitor and
far away. When the charges are far away, there 1s a weak but enormously spread-
out field that surrounds the capacitor. (See Fig. 27-4.) Then, as the charges
come together, the field gets stronger nearer to the capacitor. So the field energy
which 1s way out moves toward the capacitor and eventually ends up between the
plates.

As another example, we ask what happens in a piece of resistance wire when it
1s carrying a current. Since the wire has resistance, there is an electric field along it,
driving the current. Because there 1s a potential drop along the wire, there is also
an electric field just outside the wire, parallel to the surface. (See Fig. 27-5.)
There is, in addition, a magnetic field which goes around the wire because of the
current. The E and B are at right angles; therefore there 1s a Poynting vector
directed radially inward, as shown in the figure. There is a flow of energy into the
wire all around. It is, of course, equal to the energy being lost in the wire in the
form of heat. So our “crazy” theory says that the electrons are getting their
energy to generate heat because of the energy flowing into the wire from the field
outside. Intuition would seem to tell us that the electrons get their energy from
being pushed along the wire, so the energy should be flowing down (or up) along
the wire. But the theory says that the eiectrons are really being pushed by an electric
field, which has come from some charges very far away, and that the electrons get
their energy for generating heat from these fields. The energy somehow flows
from the distant charges into a wide area of space and then inward to the wire.

Finally, in order to really convince you that this theory is obviously nuts,
we will take one more example—an example in which an electric charge and a
magnet are af rest near each other—both sitting quite still. Suppose we take the
example of a point charge sitting near the center of a bar magnet, as shown in
Fig. 27-6 Everything is at rest, so the energy 1s not changing with time. Also,
E and B are quite static. But the Poynting vector says that there is a flow of energy,
because there is an E X B that is not zero. If you look at the energy flow, you find
that 1t just circulates around and around. There isn’t any change in the energy
anywhere—everything which flows into one volume flows out again It 1s like
incompressible water flowing around. So there is a circulation of energy in this
so-called static condition. How absurd 1t gets!

Perhaps it isn’t so terrbly puzzling, though, when you remember that what
we called a “‘static”” magnet is really a circulating permanent current. In a perma-
nent magnet the electrons are spinning permanently inside. So maybe a circulation
of the energy outside isn’t so queer after all.

You no doubt begin to get the impression that the Poynting theory at least
partially violates your intuition as to where energy 1s located in an electromagnetic
field. You might believe that you must revamp all your intuitions, and, therefore
have a lot of things to study here. But it seems really not necessary You don’t
need to feel that you will be in great trouble if you forget once in a while that the
energy in a wire is flowing into the wire from the outside, rather than along the
wire. [t seems to be only rarely of value, when using the idea of energy conserva-
tion, to notice in detail what path the energy 1s taking. The circulation of energy
around a magnet and a charge seems, 1n most circumstances, to be quite unimpor-
tant. It 1s not a vital detail, but it is clear that our ordinary intuitions are quite
wrong.
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27-6 Field momentum

Next we would like to talk about the momentum in the electromagnetic field.
Just as the ficld has energy, it will have a certain momentum per unit volume.
Let us call that momentum density g. Of course, momentum has various possible
directions, so that g must be a vector. Let’s talk about one component at a time;
first, we take the x-component. Since each component of momentum is conserved
we should be able to write down a law that looks something like this:

_ 9 momentum) _ 98 + momentum
9t \ of matter /, o1 outflow /.~

The left side is easy. The rate-of-change of the momentum of matter is just the
force on it. For a particle, it is F = g(E 4+ v X B); for a distribution of charges,
the force per unit volume 1s (pE + j X B). The “momentum outflow” term,
however, is strange. It cannot be the divergence of a vector because it is not a
scalar; it is, rather, an x-component of some vector. Anyway, it should probably
look something like

da b Jc
5)2+6_y+52’

because the x-momentum could be flowing in any one of the three directions.
In any case, whatever a, b, and ¢ are, the combination is supposed to equal the
outflow of the x-momentum.

Now the game would be to write pE 4 j X B in terms only of E and B—
eliminating p an j by using Maxwell’s equations—and then to juggle terms and make
substitutions 1o get it into a form that looks like

0g: , 9a ob dc
a1 + % + 3y + T
Then, by identifying terms, we would have expressions for g,, @, b, and c. It’s a
lot of work, and we are not gomng to do 1t. Instead, we are only going to find an
expression for g, the momentum density—and by a different route.

There is an important theorem in mechanics which 1s this: whenever there is
a flow of energy in any circumstance at all (field energy or any other kind of energy),
the energy flowing through a unit area per unit time, when multiplied by 1/c2, is
equal to the momentum per unit volume 1n the space In the special case of elec-
trodynamics, this theorem gives the result that g 1s 1/c¢? times the Poynting vector

g =S (27.21)

So the Poynting vector gives not only energy flow but, if you divide by ¢?, also the
momentum density. The same result would come out of the other analysis we
suggested, but it 1s more interesting to notice this more general result. We will
now give a number of interesting examples and arguments to convince you that
the general theorem is true.

First example: Suppose that we have a lot of particles in a box—Tlet’s say N
per cubic meter—and that they are moving along with some velocity v. Now let’s
consider an imaginary plane surface perpendicular to v. The energy flow through
a umit area of this surface per second is equal to Nv, the number which flow through
the surface per second, times the energy carried by each one. The energy in each
particle is mgc®/+/T — v2/c2. So the energy flow per second 1s

m002

VT — )

But the momentum of each particle i1s mgr/v/1 — v2/c2, so the density of mo-
mentum is

Nv

meuv
N —% .,

VI = 02/c?
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Fig. 27-7. The energy U in motion at
the speed ¢ carries the momentum U/c.

which 1s just 1/c? times the energy flow—as the theorem says. So the theorem 1s
true for a bunch of particles.

It is also true for ight. When we studied light in Volume I, we saw that when
the energy 1s absorbed from a light beam, a certain amount of momentum 1s de-
livered to the absorber. We have, in fact, shown in Chapter 36 of Vol. I that the
momentum is 1/¢ times the energy absorbed [Eq. (36.24) of Vol. I]. If we let U,
be the energy arriving at a unit area per second, then the momentum arriving at a
unit area per second is Uy/c. But the momentum is travelling at the speed c, so its
density in front of the absorber must be Uy/c2. So again the theorem is right.

Finally we will give an argument due to Einstein which demonstrates the
same thing once more. Suppose that we have a railroad car on wheels (assumed
frictionless) with a certain big mass M. At one end there is a device which will
shoot out some particles or light (or anything, it doesn’t make any difference what
1t is), which are then stopped at the opposite end of the car. There was some
energy originally at one end—say the energy U indicated in Fig. 27-7(a)—and then
later it is at the opposite end, as shown in Fig. 27-7(c). The energy U has been
displaced the distance L, the length of the car. Now the energy U has the mass
U/c?, so 1f the car stayed still, the center of gravity of the car would be moved.
Einstein didn’t like the 1dea that the center of gravity of an object could be moved
by fooling around only on the inside, so he assumed that it is impossible to move
the center of gravity by doing anything inside. But if that is the case, when we
moved the energy U from one end to the other, the whole car must have recoiled
some distance x, as shown 1n part (c) of the figure. You can see, in fact, that the
total mass of the car, times x, must equal the mass of the energy moved, U/c®
times L (assuming that U/c? is much less than M):

U
Mx = - L. (27.22)

Let’s now look at the special case of the energy being carried by a light flash.
(The argument would work as well for particles, but we will follow Einstein, who
was mnterested in the problem of light ) What causes the car to be moved? Einsten
argued as follows: When the light is emitted there must be a recoil, some unknown
recoil with momentum p. It is this recoil which makes the car roll backward.
The recoil velocity » of the car will be this momentum divided by the mass of the
car:

The car moves with this velocity until the light energy U gets to the oppostte end.
Then, when it hits, it gives back its momentum and stops the car. If x 1s small,
then the time the car moves is nearly equal to L/c; so we have that

=L pL
x=wt=0v-_ =
Putting this x in Eq. (27.22), we get that
_ V.
P=7

Again we have the relation of energy and momentum for light. Dividing by ¢ to
get the momentum density g = p/c, we get once more that

U
g= = (27.23)

You may well wonder: What is so important about the center-of-gravity
theorem? Maybe it is wrong. Perhaps, but then we would also lose the conserva-
tion of angular momentum. Suppose that our boxcar is moving along a track at
some speed v and that we shoot some light energy from the rop to the bottom of
the car—say, from A4 to Bin Fig. 27-8. Now we look at the angular momentum of
the system about the point P Before the energy U leaves A, it has the mass
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m = U%/c and the velocity ¢, so it has the angular momentum mwr, When it
arrives at B, 1t has the same mass and, if the linear momentum of the whole boxcar
is not to change, it must still have the velocity ». It’s angular momentum about P
is then murg. The angular momentum will be changed wnless the right recoil
momentum was given to the car when the light was emitted—that is, unless the
light carries the momentum U/c. It turns out that the angular momentum con-
servation and the theorem of center-of-gravity are closely related in the relativity
theory. So the conservation of angular momentum would also be destroyed if our
theorem were not true At any rate, 1t does turn out to be a true general law, and
in the case of electrodynamics we can use it to get the momentum in the field.

We will mention two further examples of momentum in the electromagnetic
field. We pointed out in Section 26-2 the failure of the law of action and reaction
when two charged particles were moving on orthogonal trajectories. The forces
on the two particles don’t balance out, so the action and reaction are not equal,
therefore the net momentum of the matter must be changing. It is not conserved
But the momentum n the field is also changing in such a situation. If you work
out the amount of momentum given by the Poynting vector, 1t 1s not constant.
However, the change of the particle momenta is just made up by the field momen-
tum, so the total momentum of particles plus field is conserved.

Finally, another example is the situation with the magnet and the charge.
shown in Fig. 27-6. We were unhappy to find that energy was flowing around in
circles, but now, since we know that energy flow and momentum are proportional,
we know also that there is momentum circulating in the space. But a circulating
momentum means that there is angu/ar momentum. So there is angular momentum
in the field. Do you remember the paradox we described in Section 17-4 about a
solenoid and some charges mounted on a disc? It seemed that when the current
turned off, the whole disc should start to turn The puzzle was: Where did the
angular momentum come from? The answer is that if you have a magnetic field and
some charges, there will be some angular momentum in the field. It must have
been put there when the field was built up. When the field is turned off, the angular
momentum is given back. So the disc in the paradox would start rotating.
This mystic circulating flow of energy, which at first seemed so ndiculous, is ab-
solutely necessary. There is really a momentum flow. It is needed to maintain the
conservation of angular momentum in the whole world.
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Fig. 27-8. The energy U must carry
the momentum U/c if the angular mo-
mentum about P is to be conserved.



