22

AC Circuits

22-1 Impedances

Most of our work in this course has been aimed at reaching the complete
equations of Maxwell. In the last two chapters we have been discussing the con-
sequences of these equations. We have found that the equations contain all the
static phenomena we had worked out earlier, as well as the phenomena of electro-
magnetic waves and light that we had gone over 1n some detail in Volume I. The
Maxwell equations give both phenomena, depending upon whether one computes
the fields close to the currents and charges, or very far from them There 18 not
much interesting to say about the intermediate region; no special phenomena
appear there.

There still remain, however, several subjects in electromagnetism that we
want to take up. We want to discuss the question of relativity and the Maxwell
equations—what happens when one looks at the Maxwell equations with respect
to moving coordinate systems. There is also the question of the conservation of
energy in electromagnetic systems. Then there is the broad subject of the electro-
magnetic properties of materials; so far, except for the study of the properties
of dielectrics, we have considered only the electromagnetic fields in free space  And
although we covered the subject of light in some detail in Volume 1, there are
still a few things we would like to do again from the point of view of the field
equations.

In particular, we want to take up again the subject of the index of re-
fraction, particularly for dense materials. Finally, there are the phenomena
associated with waves confined in a limited region of space. We touched on this
kind of problem briefly when we were studying sound waves. Maxwell’s equations
lead also to solutions which represent confined waves of the electric and magneuc
fields. We will take up this subject, which has important technical applications,
in some of the following chapters. In order to lead up to that subject, we will
begin by considering the properties of electrical circuits at low frequencies. We
will then be able 1o make a comparison between those situations in which the
almost static approximations of Maxwell’s equations are applicable and those
situations in which high-frequency effects are dominant.

So we descend from the great and esoteric heights of the last few chapters
and turn to the relatively low-level subject of electrical circuits. We will see, how-
ever, that even such a mundane subject, when looked at in sufficient detail, can
contain great complications

We have already discussed some of the properties of electrical circuits in
Chapters 23 and 25 of Vol. I. Now we will cover some of the same material again,
but in greater detail. Again we are going to deal only with linear systems and with
voltages and currents which all vary sinusoidally ; we can then represent all voltages
and currents by complex numbers, using the exponential notation described in
Chapter 22 of Vol. I. Thus a time-varying voltage V(7) will be written

V() = Ve, 22.1)
where V represents a ¢omplex number that is independent of 7. It is, of course,

understood that the actual time-varying voltage V(¢) is given by the real part of
the complex function on the right-hand side of the equation.
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Similarly, all of our other time-varying quantities will be taken to vary
sinusoidally at the same frequency w. So we write
I =1e*t (current),
& et (emf), (22.2)
E et (electric field),

&
E

{

and so on.

Most of the time we will write our equations in terms of ¥, [, &, . . . (instead of
in terms of ¥, I, &, ...), remembering, though, that the time variations are as
given in (22.2).

In our earlier discussion of circuits we assumed that such things as inductances,
capacitances, and resistances were familiar to you. We want now to look in a little
more detail at what is meant by these idealized circuit elements. We begin with
the inductance.

An inductance is made by winding many turns of wire in the form of a coil
and bringing the two ends out to terminals at some distance from the coil, as shown
in Fig. 22-1. We want to assume that the magnetic field produced by currents in
the coil does not spread out strongly all over space and interact with other parts of
the circuit. This is usually arranged by winding the coil in a doughnut-shaped
form, or by confining the magnetic field by winding the coil on a suitable iron core,
or by placing the coil in some suitable metal box, as indicated schematically in
Fig. 22-1. In any case, we assume that there 1s a negligible magnetic field in the
external region near the terminals @ and b. We are also going to assume that we
can neglect any electrical resistance in the wire of the coil. Finally, we will assume
that we can neglect the amount of electrical charge that appears on the surface of
a wire 1n building up the electric fields.

With all these approximations we have what we call an “ideal” inductance.
(We will come back later and discuss what happens in a real inductance.) For an
ideal inductance we say that the voltage across the terminals is equal to L(d//dr).
Let’s see why that is so. When there is a current through the inductance, a magnetic
field proportional to the current is built up inside the coil. If the current changes
with time, the magnetic field also changes. In general, the curl of E is equal to
—dB/dt; or, put differently, the line integral of E all the way around any closed
path1s equal to the negative of the rate of change of the flux of B through the loop
Now suppose we consider the following path: Begin at terminal ¢ and go along
the coil (staying always inside the wire) to terminal b; then return from terminal b
to terminal g through the air in the space outside the inductance. The line integral
of E around this closed path can be written as the sum of two parts:

[E-ds - /abE-ds—i— /b E-ds. (22.3)

via outside
co1l

As we have seen before, there can be no electric fields inside a perfect conductor.
(The smallest fields would produce infinite currents.) Therefore the integral from
a to b via the coil 1s zero. The whole contribution to the line integral of E comes
from the path outside the inductance from terminal b to terminal a. Since we have
assumed that there are no magnetic fields in the space outside of the “box,” this
part of the integral is independent of the path chosen and we can define the po-
tentials of the two terminals. The difference of these two potentials is what we
call the voltage difference, or simply the voltage V, so we have

V= —/:E-dsz —7§E-ds.

The complete line integral is what we have before called the electromotive
force € and 1s, of course, equal to the rate of change of the magnetic flux 1n the
coill. We have seen earlier that this emf is equal to the negative rate of change of
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the current, so we have
di

V:_((;:L?ji:

where L is the inductance of the coil. Since dI/dt = iwl, we have
V = jwlLl (22.4)

The way we have described the ideal inductance illustrates the general approach
to other 1deal circuit elements—usually called “lumped” elements. The properties
of the element are described completely 1n terms of currents and voltages that
appear at the terminals. By making suitable approximations, it is possible to
ignore the great complexities of the fields that appear inside the object. A separation
is made between what happens inside and what happens outside.

For all the circuit elements we will find a relation like the one in Eq. (22.4), 1n
which the voliage is proportional to the current with a proportionality constant
that is, in general, a complex number. This complex coefficient of proportionality
is called the impedance and is usually written as z (not to be confused with the
z-coordinate). It is, in general, a function of the frequency w. So for any lumped
element we write

= z, (22.5)
For an inductance, we have
z(inductance) = z; = jwl. (22.6)

Now let’s look at a capacitor from the same point of view.* A capacitor con-
sists of a pair of conducting plates from which two wires are brought out to suitable
terminals. The plates may be of any shape whatsoever, and are often separated
by some diclectric material. We 1illustrate such a situation schematically in Fig.
22-2. Again we make several simplifying assumptions. We assume that the
plates and the wires are perfect conductors. We also assume that the insulation
between the plates 1s perfect, so that no charges can flow across the insulation
from one plate to the other. Next, we assume that the two conductors are close
to each other but far from all others, so that all field lines which leave one plate
end up on the other. Then there are always equal and opposite charges on the two
plates and the charges on the plates are much larger than the charges on the sur-
faces of the lead-in wires. Finally, we assume that there are no magnetic fields
close to the capacitor.
™ Suppose now we consider the line integral of E around a closed loop which
starts at terminal a, goes along inside the wire to the top plate of the capacitor,
jumps across the space between the plates, passes from the lower plate to terminal
b through the wire, and returns to terminal @ in the space outside the capacitor.
Since there is no magnetic field, the line integral of E around this closed path 1s
zero. The integral can be broken down into three parts:

9§E-ds=/ E-ds + / E-ds + /b E - ds. 22.7)
alone bermoen outside

The 1ntegral along the wires is zero, because there are no electric fields inside per-
fect conductors. The integral from b to a outside the capacitor 1s equal to the nega-
tive of the potential difference between the terminals. Since we 1magined that the
two plates are in some way isolated from the rest of the world, the total charge on

* There are people who say we should call the objects by the names “inductor” and
“capacitor” and call their properties “inductance” and “‘capacitance” (by analogy with
“resistor” and “‘resistance’). We would rather use the words you will hear in the labora-
tory. Most people still say “inductance” for both the physical coil and its inductance L.
The word ““capacitor” seems to have caught on—although you will still hear “condenser”
fairly often—and most people still prefer the sound of “capacity™ to ““capacitance.”
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the two plates must be zero; if there is a charge Q on the upper plate, there is an
equal, opposite charge — Q on the lower plate. We have seen earlier that if two
conductors have equal and opposite charges, plus and minus Q, the potential
difference between the plates is equal to Q/C, where C s called the capacity of the
two conductors. From Eq. (22.7) the potential difference between the terminals
a and b is equal to the potential difference between the plates. We have, therefore,
that
Q
V _ E M

The electric current I entering the capacitor through terminal a (and leaving
through terminal b) is equal to dQ/dt, the rate of change of the electric charge on
the plates. Writing dV/dt as 1wV, we can put the voltage current relationship for
a capacitor in the following way:

le = é:
or
1
V = —C (22.8)
The impedance z of a capacitor, is then
z (capacitor) = z¢ = —1— 22.9)
iwC

The third element we want to consider is a resistor. However, since we have
not yet discussed the electrical properties of real materials, we are not yet ready
to talk about what happens inside a real conductor. We will just have to accept
as fact that electric fields can exist inside real materials, that these electric fields
give rise to a flow of electric charge—that is, to a current—and that this current
1s proportional to the integral of the electric field from one end of the conductor
to the other. We then imagine an ideal resistor constructed as in the diagram of
Fig. 22-3. Two wires which we take to be perfect conductors go from the terminals
a and b to the two ends of a bar of resistive material. Following our usual line of
argument, the potential difference between the terminals @ and b is equal to the
line integral of the external electric field, which is also equal to the line integral of
the electric field through the bar of resistive material. It then follows that the cur-
rent [ through the resistor is proportional to the terminal voltage V:

I = R’
where R 1s called the resistance. We will see later that the relation between the
current and the voltage for real conducting materials 1s only approximately linear.
We will also see that this approximate proportionality 1s expected to be independent
of the frequency of variation of the current and voltage only if the frequency 1s
not too high. For alternating currents then, the voltage across a resistor is in phase
with the current, which means that the impedance is a real number.

z (resistance) = zp = R. (22.10)

Our results for the three lumped circutt elements—the inductor, the capacitor,
and the resistor—are summarized in Fig. 22-4. In this figure, as well as in the
preceding ones, we have indicated the voltage by an arrow that 1s directed from one
terminal to another. If the voltage 1s “positive”—that 1s, 1f the terminal @ 1s at a
nigher potential than the terminal b—the arrow indicates the direction of a positive
“voltage drop.”

Although we are talking about alternating currents, we can of course include
the special case of circuits with steady currents by taking the mit as the frequency
w goes to zero. For zero frequency—that is, for pc—the impedance of an induc-
tance goes to zero; 1t becomes a short circuit. For Dc, the impedance of a condenser
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goes to infinity; it becomes an open circuit. Since the impedance of a resistor is
independent of frequency, it 1s the only element left when we analyze a circuit
for DC.

In the circuit elements we have described so far, the current and voltage are
proportional to each other. If one is zero, so also is the other. We usually think in
terms like these: An applied voltage is “responsible” for the current, or a current
“gives rise to” a voltage across the terminals; so in a sense the elements “respond”
to the “applied” external conditions. For this reason these elements are called
passive elements. They can thus be contrasted with the active elements, such as
the generators we will consider in the next section, which are the sources of the
oscillating currents or voltages in a circuit.

22-2 Generators

Now we want to talk about an active circuit element—one that 1s a source of
the currents and voltages in a circuit—namely, a generator.

Suppose that we have a coil like an inductance except that 1t has very few
turns, so that we may neglect the magnetic field of its own current. This coil,
however, sits in a changing magnetic field such as might be produced by a rotating
magnet, as sketched in Fig. 22-5. (We have seen earlier that such a rotating mag-
netic field can also be produced by a suitable set of coils with alternating currents.)
Again we must make several simplifying assumptions. The assumptions we will
make are all the ones that we described for the case of the inductance. In particular,
we assume that the varying magnetic field is restricted to a definite region in the
vicinity of the coil and does not appear outside the generator 1n the space between
the terminals.

Following closely the analysis we made for the inductance, we consider the
line integral of E around a complete loop that starts at termnal a, goes through the
coil to terminal b and returns to tts starting point in the space between the two
terminals. Again we conclude that the potential difference between the terminals
is equal to the total line integral of E around the loop:

V = ~9§E-ds.

This line integral is equal to the emf in the circuit, so the potential difference V
across the terminals of the generator is also equal to the rate of change of the mag-
netic flux linking the coil:

d
V= -&= 7 (flux). (22.11)

For an ideal generator we assume that the magnetic flux linking the coil is deter-
mined by external conditions—such as the angular velocity of a rotating magnetic
field—and is not influenced in any way by the currents through the generator.
Thus a generator—at least the ideal generator we are considering—is not an
impedance. The potential difference across its terminals is determined by the
arbitrarily assigned electromotive force &(¢). Such an ideal generator 1s represented
by the symbol shown in Fig. 22-6. The little arrow represents the direction of the
emf when 1t is positive. A posttive emf 1n the generator of Fig. 22—6 will produce
a voltage V' = §&, with the terminal ¢ at a higher potential than the terminal b.
There is another way to make a generator which is quite different on the
inside but which is indistinguishable from the one we have just described insofar
as what” happens beyond its terminals. Suppose we have a coil of wire which
is rotated in a fixed magnetic field, as indicated in Fig. 22-7. We show a bar
magnet to indicate the presence of a magnetic field; it could, of course, be replaced
by any other source of a steady magnetic field, such as an additional coil carrying
a steady current. As shown in the figure, connections from the rotating coil are
made to the outside world by means of sliding contacts or “slip rings.” Again,
we are interested in the potential difference that appears across the two terminals
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Fig. 22-7. A generator consisting of J
a coil rotating in a fixed magnetic field.

a and b, which is of course the integral of the electric field from termunal « to ter-
nunal b along a path outside the generator.

Now in the system of Fig. 227 there are no changing magnetic fields, so we
might at first wonder how any voltage could appear at the generator terminals
In fact, there are no electric fields anywhere inside the generator. We are, as usual,
assuming for our 1deal elements that the wires inside are made of a perfectly con-
ducting material, and as we have said many times, the electric field inside a perfect
conductor is equal to zero. But that 1s not true. It is not true when a conductor
is moving 1n a magnetic field. The true statement is that the total force on any
charge inside a perfect conductor must be zero. Otherwise there would be an
infinite flow of the free charges. So what is always (rue is that the sum of the electric
field E and the cross product of the velocity of the conductor and the magnetic
field B—which 1s the total force on a umit charge—must have the value zero
inside the conductor:

F=E+ v X B =0 (ina perfect conductor), (22.12)

where v represents the velocity of the conductor. Our earlier statement that there
is no electric field inside a perfect conductor 1s all right 1f the velocity v of the
conductor is zero; otherwise the correct statement is given by Eq. (22.12).

Returning to our generator of Fig. 22-7, we now see that the line integral of
the electric field E from terminal ¢ to terminal b through the conducting path of
the generator must be equal to the line integral of v X B on the same path,

b b
f E-ds = —/ (v X B)-ds. (22.13)
msxltie ms?dc
conductor conductor

It is still true, however, that the line integral of E around a complete loop, including
the return from b to g outside the generator, must be zero, because there are no
changing magnetic fields. So the first integral in Eq. (22.13) 1s also equal to V,
the voltage between the two terminals. It turns out that the right-hand integral
of Eq. (22 13) 1s just the rate of change of the flux linkage through the coil and is
therefore—by the flux rule—equal to the emf in the coil. So we have again that
the potential difference across the terminals 1s equal to the electromotive force in
the circuit, in agreement with Eq. (22.11). So whether we have a generator in which
a magnetic field changes near a fixed coil, or one in which a coil moves in a fixed
magnetic field, the external properties of the generators are the same. There is a
voltage difference V across the terminals, which is independent of the current in
the circuit but depends only on the arbitrarily assigned conditions inside the
generator.

So long as we are trying to understand the operation of generators from the
point of view of Maxwell’s equations, we might also ask about the ordinary chemi-
cal cell, like a flashlight battery It 1s also a generator, 1.e., a voltage source, al-
though it will of course only appear in pc circuits. The simplest kind of cell to
understand 1s shown in Fig. 22-8. We imagine two metal plates immersed in some
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chemical solution. We suppose that the solution contains positive and negative
ions. We suppose also that one kind of ion, say the negative, is much heavier than
the one of opposite polarity, so that its motion through the solution by the process
of diffusion is much slower. We suppose next that by some means or other it is
arranged that the concentration of the solution is made to vary from one part of
the liquid to the other, so that the number of ions of both polarities near, say, the
lower plate is much larger than the concentration of ions near the upper plate.
Because of their rapid mobility the positive ions will drift more readily into the
region of lower concentration, so that there will be a slight excess of positive charge
arriving at the upper plate. The upper plate will become positively charged and
the lower plate will have a net negative charge.

As more and more charges diffuse to the upper plate, the potential of this plate
will rise until the resulting electric field between the plates produces forces on the
ions which just compensate for their excess mobility, so the two plates of the cell
quickly reach a potential difference which is characteristic of the internal con-
struction.

Arguing just as we did for the ideal capacitor, we see that the potential differ-
ence between the terminals a and b is just equal to the line integral of the electric
field between the two plates when there is no longer any net diffusion of the ions.
There 1s, of course, an essential difference between a capacitor and such a chemical
cell. If we short-circuit the terminals of a condenser for a moment, the capacitor
is discharged and there is no longer any potential difference across the terminals.
In the case of the chemical cell a current can be drawn from the terminals con-
tinuously without any change in the emf—until, of course, the chemicals inside
the cell have been used up. In a real cell it is found that the potential difference
across the terminals decreases as the current drawn from the cell increases. In
keeping with the abstractions we have been making, however, we may imagine an
ideal cell in which the voltage across the terminals is independent of the current.
A real cell can then be looked at as an ideal cell in series with a resistor.

22-3 Networks of ideal elements; Kirchhoff’s rules

As we have seen in the last section, the description of an ideal circuit element
in terms of what happens outside the element is quite simple. The current and
the voltage are linearly related. But what is actually happening inside the element
is quite complicated, and it is quite difficult to give a precise description in terms of
Maxwell’s equations. Imagine trying to give a precise description of the electric
and magnetic fields of the inside of a radio which contains hundreds of resistors,
capacitors, and inductors. It would be an impossible task to analyze such a thing
by using Maxwell’s equations. But by making the many approximations we have
described in Section 22-2 and summarizing the essential features of the real
circuit elements in terms of idealizations, it becomes possible to analyze an elec-
trical circuit in a relatively straightforward way. We will now show how that
is done.

Suppose we have a circuit consisting of a generator and several impedances
connected together, as shown in Fig. 22-9. According to our approximations there
is no magnetic field in the region outside the individual circuit elements. Therefore
the line integral of E around any curve which does not pass through any of the
elements 1s zero. Consider then the curve I' shown by the broken line which goes
all the way around the circuit in Fig. 22-9. The line integral of E around this curve
is made up of several pieces. Each piece is the line integral from one terminal of a
circuit element to the other. This line integral we have called the voltage drop
across the circuit element. The complete line integral is then just the sum of the
voltage drops across all of the elements in the circuit:

$E-ds =3 V.

Since the line integral is zero, we have that the sum of the potential differences
22-7
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Fig. 22-10. The sum of the currents
into any node is zero.

Fig. 22-11. Analyzing a circuit with
Kirchhoff's rules.

around a complete loop of a circuit is equal to zero:

> V.=0. (22.14)

around
any loop
This result follows from one of Maxwell’s equations—that in a region where there
are no magnetic fields the line integral of E around any complete loop is zero.
Suppose we consider now a circuit like that shown in Fig. 22-10. The hori-
zontal line joining the terminals a, b, ¢, and d is intended to show that these ter-
minals are all connected, or that they are joined by wires of negligible resistance.
In any case, the drawing means that terminals a, b, ¢, and d are all at the same
potential and, similarly, that the terminals e, f, g, and 4 are also at one common
potential. Then the voltage drop V across each of the four elements is the same.
Now one of our idealizations has been that negligible electrical charges ac-
cumulate on the terminals of the impedances. We now assume further that any
electrical charges on the wires joining terminals can also be neglected. Then the
conservation of charge requires that any charge which leaves one circuit element
immediately enters some other circuit element. Or, what is the same thing, we
require that the algebraic sum of the currents which enter any given junction must
be zero. By a junction, of course, we mean any set of terminals such as «, b, c,
and d which are connected. Such a set of connected terminals 1s usually called a
“node.” The conservation of charge then requires that for the circuit of Fig. 22-10,

I — Iy — Iy — I, = 0. (22.15)

The sum of the currents entering the node which consists of the four terminals
e, f, &, and A must also be zero:

I+ I+ I3+ I, = 0. (22.16)

This is, of course, the same as Eq. (22.15). The two equations are not independent.
The general rule 1s that the sum of the currents into any node must be zero.

> L =0. (22.17)

into
a node

Our earlier conclusion that the sum of the voltage drops around a closed loop
1s zero must apply to any loop in a complicated circuit. Also, our result that the
sum of the currents into a node is zero must be true for any node. These two equa-
tions are known as Kirchhoff’s rules. With these two rules it is possible to solve for
the currents and voltages in any network whatever.

Suppose we consider the more complicated circuit of Fig. 22-11. How shall
we find the currents and voltages in this circuit? We can find them in the following
straightforward way. We consider separately each of the four subsidiary closed
loops which appear in the circuit. (For instance, one loop goes from terminal a to
terminal b to terminal e to terminal d and back to terminal a.) For each of the loops
we write the equation for the first of Kirchhoff’s rules—that the sum of the voltages
around each loop 1s equal to zero. We must remember to count the voltage drop
as positive if we are going in the direction of the current and negative 1f we are
going across an element 1n the direction opposite to the current; and we must
remember that the voltage drop across a generator is the negative of the emf in
that direction. Thus if we consider the small loop that starts and ends at terminal
a we have the equation

2y + z3l3 + z4dy — 8, = 0.

Applying the same rule to the remaining loops, we would get three more equations
of the same kind.

Next, we must write the current equation for each of the nodes in the circuit.
For example, summing the currents into the node at terminal & gives the equation

11 - [3 - 12 = 0.
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Similarly, for the node labeled e we would have the current equation
13—I4+18—I5=O.

For the circuit shown there are five such current equations. It turns out, however,
that any one of these equations can be derived from the other four; there are,
therefore, only four independent current equations. We thus have a total of eight
independent, linear equations: the four voltage equations and the four current
equations. With these eight equations we can solve for the eight unknown currents.
Once the currents are known the circuit is solved. The voltage drop across any
element is given by the current through that element times its impedance (or, in
the case of the voltage sources, it is already known).

We have seen that when we write the current equations, we get one equation
which is not independent of the others. Generally it is also possible to write down
too many voltage equations. For example, in the circuit of Fig. 22-11, although
we have considered only the four small loops, there are a large number of other
loops for which we could write the voltage equation. There 1s, for example, the
loop along the path abcfeda. There is another loop which follows the path
abcfehgda. You can see that there are many loops. In analyzing complicated cir-
cuits it is very easy to get too many equations. There are rules which tell us how to
proceed so that only the minimum number of equations is written down, but
usually with a little thought it is possible to see how to get the right number of
equations in the simplest form. Besides, writing an extra equation or two doesn’t
do any harm. They will not lead to any wrong answers, only perhaps a little
unnecessary algebra.

In Chapter 25 of Vol. I we showed that if the two impedances z; and z, are
in series, they are equivalent to a single impedance z, given by

zs = zy + zo. (22.18)

We also showed that if the two impedances are connected in parallel, they are
equivalent to the single impedance z, given by
1 Z1Z9

DU F () zit o (22.19)

If you look back you will see that in deriving these results we were in effect making
use of Kirchhoff’s rules. It is often possible to analyze a complicated circuit by
repeated application of the formulas for series and parallel impedances. For in-
stance, the circuit of Fig. 22-12 can be analyzed that way. First, the impedances
z4 and z5 can be replaced by their parallel equivalent, and so also can z, and z;.
Then the impedance z, can be combined with the parallel equivalent of zg and z;
by the series rule. Proceeding in this way, the whole circuit can be reduced to a
generator in series with a single impedance Z. The current through the generator
is then just §/Z. Then by working backward one can solve for the currents in
each of the impedances.

There are, however, quite simple circuits which cannot be analyzed by this
method, as for example the circuit of Fig. 22-13. To analyze this circuit we must

G } Zg Zy Zg

Fig. 22-12. A circuit which can be
analyzed in terms of series and parallel
combinations.

qQ b c
Z, ||n z, lIz Zy || 1=,
Fig. 22-13. A circuit that cannot be
analyzed in terms of series and parallel
d e f combinations.
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net-

write down the current and voltage equations from Kirchhoff’s rules. Let’s do it.
There 1s just one current equation:

I+ 1,4+ I; =0,
so we know immediately that
I3 = —(Iy + I).

We can save ourselves some algebra if we immediately make use of this result in
writing the voltage equations. For this circuit there are two independent voltage
equations; they are
—& + ]222 — 1121 =0
and
&9 — Iy + Io)zg — Ipzp = 0.

There are two equations and two unknown currents. Solving these equations for
I, and I, we get

2382 — (22 + 23)&;
z1(z2 + 23) + 2223

I = (22.20)

and
z18s + 238,

I = z1(23 + 23) + 2223 (22.21)

The third current is obtained from the sum of these two.

Another example of a circuit that cannot be analyzed by using the rules for
series and parallel impedance is shown in Fig. 22-14. Such a circuit is called a
“bridge.” It appears in many instruments used for measuring impedances. With
such a circwt one is usually interested in the question: How must the various
impedances be related if the current through the impedance z3 is to be zero? We
leave it for you to find the conditions for which this is so.

22-4 Equivalent circuits

Suppose we connect a generator & to a circuit containing some complicated
interconnection of impedances, as indicated schematically in Fig. 22-15(a). All
of the equations we get from Kirchhoff’s rules are linear, so when we solve them
for the current I through the generator, we will get that [ is proportional to &.
We can write

&
I = E)
Zeff

where now z.; is some complex number, an algebraic function of all the elements
in the circuit. (If the circuit contains no generators other than the one shown, there
is no additional term independent of €.) But this equation is just what we would
write for the circuit of Fig. 22-15(b). So long as we are interested only in what
happens to the left of the two terminals a and b, the two circuits of Fig. 22-15 are
equivalent. We can, therefore, make the general statement that any two-terminal
network of passive elements can be replaced by a single impedance z. without
changing the currents and voltages in the rest of the circuit. This statement 1s, of
course, just a remark about what comes out of Kirchhoff’s rules—and ultimately
from the linearity of Maxwell’s equations.

The idea can be generalized to a circuit that contains generators as well as
impedances. Suppose we look at such a circuit “from the point of view” of one of
the impedances, which we will call z,,, as in Fig. 22-16(a). If we were to solve the
equation for the whole circuit, we would find that the voltage V,, between the two
terminals ¢ and b is a linear function of I, which we can write

where 4 and B depend on the generators and impedances in the circuit to the left
22-10



of the terminals. For instance, for the circuit of Fig. 22-13, we find V; = I,z,.

This can be written (by rearranging Eq. (22.20)] as A a i".
ny ]
Z2 2223 ircuit
e [Cer Rl e ¢223) s |/
and €'s
The complete solution is then obtained by combining this equation with the one (0) Vn Zn
for the impedance z,, namely, ¥ = Iyz,, or in the general case, by combining \
Eq. (22.22) with
Vi = LLz,. b

If now we consider that z,, is attached to a simple series circuit of a generato:
and a current, as in Fig. 22-15(b), the equation corresponding to Eq. (22.22) is I__IL

Ve = 8t — InZest, [

which is identical to Eq. (22.22) provided we set .; = A4 and z.4 = B. So if we

are interested only in what happens to the right of the terminals a and b, the arbi-

trary circuit of Fig. 22-16 can always be replaced by an equivalent combination of (b)
a generator in series with an impedance.

Vi
22-5 Energy @ \

We have seen that to build up the current 7 in an inductance, the energy
= 1LI? must be provided by the external circuit. When the current falls back b
to zero, this energy is delivered back to the external circuit. There is no energy-loss Fig. 22-16. Any two-terminal net-
mechanism in an ideal inductance. When there is an alternating current through /1" con be replaced by a generator in
an inductance, energy flows back and forth between it and the rest of the circuit,  series with an impedance.
but the average rate at which energy is delivered to the circuit is zero. We say that
an inductance is a nondissipative element; no electrical energy is dissipated—that 1s,
“lost”—in it.
Similarly, the energy of a condenser, U = 3CV?, is returned to the external
circuit when a condenser 1s discharged. When a condenser is in an AC circuit
energy flows in and out of 1t, but the net energy flow in each cycle is zero. An ideal
condenser is also a nondissipative element.
We know that an emf is a source of energy. When a current / flows in the
direction of the emf, energy is delivered to the external circuit at the rate dU/dt =
&I 1f current is driven against the emf—by other generators in the circuit—the
emf will absorb energy at the rate &€/; since I 1s negative, dU/dt will also be negative.
If a generator 1s connected to a resistor R, the current through the resistor
is I = &/R. The energy being supplied by the generator at the rate &I 1s being
absorbed by the resistor. This energy goes into heat in the resistor and is lost
from the electrical energy of the circuit. We say that electrical energy is dissipated
in a resistor. The rate at which energy is dissipated 1n a resistor is dU/dt = RI®.
In an Ac circuit the average rate of energy lost to a resistor 1s the average of
RI? over one cycle. Since I = Je*'—by which we really mean that 7 varies us
cos wi—the average of 1% over one cycle 1s |7]2/2, since the peak current is |/ and
the average of cos? wr is 1/2. R
What about the energy loss when a generator is connected to an arbitrary
impedance z? (By “loss” we mean, of course, conversion of electrical energy 1nto 7 —
thermal energy.) Any impedance z can be written as the sum of its real and im-
ginary parts. That is,

Zeff

z = R 4+ iX, (22.24) X
where R and X are real numbers. From the point of view of equivalent circuits we [
can say that any impedance is equivalent to a resistance in series with a pure

imaginary impedance—called a reactance—as shown in Fig. 22-17.

We have seen earlier that any circuit that contains only L’s and C’s has an Fig. 22-17. Any impedance is equiv-
impedance that 1s a pure imaginary number. Since there is no energy loss into any  alent to a series combination of a pure
of the L’s and C’s on the average, a pure reactance containing only L’s and C’s  resistance and a pure reactance.
will have no energy loss. We can see that this must be true in general for a reactance.
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Fig. 22-18. The effective impedance

of a ladder.

If a generator with the emf & is connected to the impedance z of Fig. 22-17,
the emf must be related to the current I from the generator by

& = IR + iX). (22.25)

To find the average rate at which energy is delivered, we want the average of the
product &I. Now we must be careful. When dealing with such products, we must
deal with the real quantities &(z) and I(f). (The real parts of the complex functions
will represent the actual physical quantities only when we have /inear equations;
now we are concerned with products, which are certainly not linear.)

Suppose we choose our origin of ¢ so that the amplitude / is a real number,
let’s say I; then the actual time variation I 1s given by

I = Iycos wt.
The emf of Eq. (22.25) is the real part of

Toe“ (R + iX)
or
& = IoRcos wt — ToXsin wt. (22.26)

The two terms in Eq. (22.26) represent the voltage drops across R and X
in Fig. 22-17. We see that the voltage drop across the resistance is iz phase with
the current, while the voltage drop across the purely reactive part 1s out of phase
with the current.

The average rate of energy loss, (P),,, from the generator 1s the integral of
the product &7 over one cycle divided by the period T’; in other words,

T T T
1 [ O A 1 / . ,
Py = T/o &ldr = T/o IR cos” wi dr 7/, I X cos wi sin wr di.

The first 1ntegral is 1JaR, and the second integral is zero. So the average
energy loss in an impedance z = R + /X depends only on the real part of z,
and is I;R/2, which 1s in agreement with our earlier result for the energy loss in a
resistor. There 1s no energy loss in the reactive part.

22-6 A ladder network

We would like now to consider an interesting circuit which can be analyzed
n terms of series and parallel combinations. Suppose we start with the circuit of
Fig. 22-18(a). We can see right away that the impedance from terminal a to ter-
minal b is simply z; + z,. Now let’s take a little harder circuit, the one shown in
Fig. 22-18(b). We could analyze this circmit using Kirchhoff's rules, but it 1s
also easy to handle with series and parallel combinations. We can replace the
two impedances on the right-hand end by a single impedance z; = z; + z,, as
in part (c) of the figure. Then the two impedances z, and z3 can be replaced by
their equivalent parallel impedance z,, as shown 1n part (d) of the figure. Finally,
z; and z4 are equivalent to a single impedance z;, as shown in part (e).

Now we may ask an amusing question: What would happen 1f in the network
of Fig. 22-18(b) we kept on adding more sections forever—as we indicate by the
dashed lines 1n Fig. 22-19(a)? Can we solve such an infinite network? Well, that’s

Z, }'——{ Z | 7

"

« w B 8- H

b d b

- - 5 [ ——

Fig. 22-19. The effective impedance of an infinite ladder.
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not so hard. First, we notice that such an infinite network 1s unchanged if we add
one more section at the “front” end. Surely, if we add one more section to an
infinite network it is still the same infinite network. Suppose we call the impedance
between the two terninals @ and b of the infinite network z,; then the impedance of
all the stuff to the right of the two terminals ¢ and d is also z,. Therefore, so far as
the front end is concerned, we can represent the network as shown in Fig. 22-19(b).
Combining the parallel combinations z,z, and adding the result in series with z;,
we can immediately write down the impedance of this combination:
z=zl—|—¥—ﬁl———— or z=zl+‘€&-
zy + 2o

(1/z2) 4+ (1/z0)

But this impedance is also equal to z,, so we have the equation
2920
Z3 + 2o

20 = 3+ V@D + iz

2o =z +
We can solve for z, to get
22.27

So we have found the solution for the impedance of an infinite ladder of repeated
series and parallel impedances. The impedance z, is called the characteristic
impedance of such an infinite network.

Let’s now consider a specific example in which the series element is an 1n-
ductance L and the shunt element is a capacitance C, as shown in Fig. 22-20(a).
In this case we find the impedance of the infinite network by setting z; = iwL
and zo = l/iwC. Notice that the first term, z,/2, in Eq. (22.27) is just one-half
the impedance of the first element. It would therefore seem more natural, or at
least somewhat simpler, if we were to draw our infinite network as shown in Fig.
22-20(b). Looking at the infinite network from the terminal ¢’ we would see the
characteristic impedance

zo = V(L/C) — (@2L2/4). (22.28)

Now there are two interesting cases, depending on the frequency w. If w? is less
than 4/LC, the second term in the radical will be smaller than the first, and the
impedance z, will be a real number. On the other hand, if w? 1s greater than
4/LC the impedance z, will be a pure imaginary number which we can write as

20 = iV @LZ/4) — (L/C).

We have said earlier that a circuit which contains only imaginary impedances,
such as inductances and capacitances, will have an impedance which is purely
imaginary. How can 1t be then that for the circuit we are now studying—which has
only L’s and C’s—the impedance is a pure resistance for frequencies below /4/LC?
For higher frequencies the impedance is purely imaginary, in agreement with our
earlier statement. For lower frequencies the impedance 1s a pure resistance and
will therefore absorb energy. But how can the circuit continuously absorb energy,
as a resistance does, if it is made only of inductances and capacitances? Answer:
Because there is an infinite number of inductances and capacitances, so that when
a source is connected to the circuit, it supplies energy to the first inductance and
capacitance, then to the second, to the third, and so on. In a circuit of this kind,
energy is continually absorbed from the generator at a constant rate and flows
constantly out into the network, supplying energy which is stored in the induc-
tances and capacitances down the line.

This idea suggests an interesting point about what is happening in the circwt.
We would expect that if we connect a source to the front end, the effects of this
source will be propagated through the network toward the infinite end. The
propagation of the waves down the line is much like the radiation from an antenna
which absorbs energy from its driving source; that is, we expect such a propagation
to occur when the impedance is real, which occurs if w is less than v/4/LC. But
when the impedance is purely imaginary, which happens for w greater than /4/LC,
we would not expect to see any such propagation.
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22-7 Filters

We saw in the last section that the infinite ladder network of Fig. 22-20 absorbs
energy continuously if it is driven at a frequency below a certain critical frequency
V4/LC, which we will call the cutoff frequency wo. We suggested that this effect
could be understood in terms of a continuous transport of energy down the line.
On the other hand, at high frequencies, for w > wy, there is no continuous ab-
sorption of energy; we should then expect that perhaps the currents don’t “pene-
trate” very far down the line. Let’s see whether these ideas are right.

Suppose we have the front end of the ladder connected to some Ac generator
and we ask what the voltage looks like at, say, the 754th section of the ladder.
Since the network is infinite, whatever happens to the voltage from one section to
the next 1s always the same; so let’s just look at what happens when we go from
some section, say the nth to the next. We will define the currents 7,, and voltages
V. as shown in Fig. 22-21(a).

-

If'l'!'l

— —

\
258

(b)

Fig. 22-21. Finding the propagation factor of a ladder.

We can get the voltage V., from V, by remembering that we can always
replace the rest of the ladder after the nth section by its characteristic impedance z,;
then we need only analyze the circuit of Fig. 22-21(b). First, we notice that any
V., since 1t is across z,, must equal I,z,. Also, the difference between V,, and V,,
is just [,z,:

z
Vi — Vn+l = Iz, =V, E;l)
So we get the ratio

V”?L_I:I_EJ

Vn Zo z0

Zg — 2y

We can call this ratio the propagation factor for one section of the ladder; we’ll
call it . It 1s, of course, the same for all sections:

=02 (22.29)
2y

The voltage after the nth section 1s then
V, = o"6. (22.30)

You can now find the voltage after 754 sections: it is just « to the 754th power
times &.

Suppose we see what « s like for the L-C ladder of Fig. 22-20(a) Using z,
from Eq. (22.27), and z, = iwL, we get

(22.31)

is a real number, and the magnitudes of the complex numbers in the numerator
and denominator are equal. Therefore, the magnitude of « is one; we can write

which means that the magnitude of the voltage is the same at every section, only
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its phase changes. The phase change § 1s, in fact, a negative number and represents
the “delay” of the voltage as it passes along the network.

For frequencies above the cutoff frequency w, it 1s better to factor out an !
from the numerator and denominator of Eq. (22 31) and rewrite 1t as

- = V(w2L2/4) — (L/C) — (wL/2)
V(@L274) — (L/C) 4+ (wL/2)

(22 32)

The propagation factor « is now a rea/ number, and a number less than one. That
means that the voltage at any section is always less than the voltage at the pre-
ceding section by the factor @. For any frequency above w,, the voltage dies
away rapidly as we go along the network. A plot of the absolute value of « as
function of frequency looks like the graph in Fig. 22-22.

We see that the behavior of «, both above and below w,, agrees with our
interpretation that the network propagates energy for o < w, and blocks 1t for
w > w, We say that the network “passes” low frequencies and “rejects’™ o1
“filters out™ the high frequencies. Any network designed to have 1ts characteristics
vary 1n a prescribed way with frequency 1s called a “filter.”” We have been analyzing
a “low-pass filter.”

You may be wondering why all this discussion of an infinite network which
obviously cannot actually occur. The point is that the same characteristics are
found 1n a finite network 1f we finish it off at the end with an impedence equal 10
the characteristic impedence z,. Now in practice 1t 1s not possible to exuctly
reproduce the characteristic impedance with a few simple elements—Iike R’s.
L’s,and C’s. But it is often possible to do so with a fair approximation for a certain
range of frequencies. In this way one can make a finite filter network whose
propertics are very nearly the same as those for the infinite case  For instance, the
L-C ladder behaves much as we have described 1t if it 1s terminated n the pure
resistance R = /L/C.

If in our L-C ladder we interchange the positions of the L’s and C’s, to make
the ladder shown n Fig. 22-23(a), we can have a filter that propagates /ugh fre-
quencies and rejects fow frequencies. 1t is easy to see what happens with this net-
work by using the results we alrcady have. You will notice that whenever we change
an L to a C and wice versa, we also change every 1w to 1 /iw. So whatever happened
at w before will now happen at | /w. In particular, we can see how a will vary with
frequency by using Fig. 22-22 and changing the label on the axis to 1/w, as we
have done in Fig. 22-23(b).

The low-pass and high-pass filters we have described have various technical
applications. An L-C low-pass filter is often used as a “smoothing” filter in a bc
power supply. If we want to manufacture bc power from an AC source, we begin
with a rectifier which permits current to flow only in one direction. From the
rectifier we get a series of pulses that look like the function V(r) shown in
Fig 22-24, which 1s lousy Dc, because 1t wobbles up and down. Suppose we would
like a nice pure DC, such as a battery provides. We can come close to that by
putting a low-pass filter between the rectifier and the load.

We know from Chapter 50 of Vol. 1 that the time function in Fig. 22-24 can be
represented as a superposition of a constant voltage plus a sine wave, plus a higher-
frequency sine wave, plus a still higher-frequency sine wave, etc.—by a Fourier
series. If our filter is linear (if, as we have been assuming, the L’s and C’s don’t
vary with the currents or voltages) then what comes out of the filter 13 the super-
position of the outputs for each component at the input. If we arrange that the
cutoff frequency wy of our filter 1s well below the lowest frequency 1n the function
V(1), the nc (for which w = 0) goes through fine, but the amplitude of the first
harmonic will be cut down a lot. And amplitudes of the higher harmonics will be
cut down even more. So we can get the output as smooth as we wish, depending
only on how many filter sections we are willing to buy.

A high-pass filter is used 1f one wants to reject certamn low frequencies. For
instance, in a phonograph amplfier a high-pass filter may be used to let the music
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Fig. 22-25. (a) A band-pass filter.
(b) A simple resonant filter.
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Fig. 22-26. Equivalent circuit of a
mutual inductance.

through, while keeping out the low-pitched rumbling from the motor of the
turntable.

It is also possible to make ““band-pass” filters that reject frequencies below
some frequency w; and above another frequency w, (greater than w;), but pass the
frequencies between w; and ws. This can be done simply by putting together a
high-pass and a low-pass filter, but it is more usually done by making a ladder n
which the impedances z; and z, are more complicated—being each a combination
of L’s and C’s. Such a band-pass filter might have a propagation constant like
that shown in Fig. 22-25(a). 1t might be used, for example, in separating signals
that occupy only an interval of frequencies, such as each of the many voice channels
in a high-frequency telephone cable, or the modulated carrier of a radio trans-
mission.

We have seen in Chapter 25 of Vol. I that such filtering can also be done using
the selectivity of an ordinary resonance curve, which we have drawn for comparison
in Fig. 22-25(b). But the resonant filter 1s not as good for some purposes as the
band-pass filter. You will remember (Chapter 48, Vol. 1) that when a carrier of
frequency w, is modulated with a “signal” frequency w,, the total signal contains
not only the carrier frequency but also the two side-band frequencies w, + w,
and w, — w,. With a resonant filter, these side-bands are always attentuated some-
what, and the attenuation is more, the higher the signal frequency, as you can see
from the figure. So there is a poor “frequency response.” The higher musical
tones don’t get through. But if the filtering is done with a band-pass filter designed
so that the width w,; — w; is at least twice the highest signal frequency, the fre-
quency response will be “flat” for the signals wanted.

We want to make one more point about the ladder filter: the L-C ladder of
Fig. 22-20 is also an approximate representation of a transmission line. If we
have a long conductor that runs parallel to another conductor—such as a wire in a
coaxial cable, or a wire suspended above the earth—there will be some capacitance
between the two conductors and also some inductance due to the magnetic field
between them. If we imagine the line as broken up into small lengths Af, each
length will look like one section of the L-C ladder with a series inductance AL and
a shunt capacitance AC. We can then use our results for the ladder filter. If we
take the limit as A¢ goes to zero, we have a good description of the transmission
line. Notice that as Af is made smaller and smaller, both AL and AC decrease, but
n the same proportion, so that the ratio AL/AC remains constant. So if we take
the limit of Eq. (22.28) as AL and AC go to zero, we find that the characteristic
impedance z, is a pure resistance whose magnitude is v/AL/AC. We can also
write the ratio AL/AC as Lo/C, where Ly and C| are the inductance and capaci-
tance of a unit length of the line; then we have

20 = A/ L2 (22.33)

You will also notice that as AL and AC go to zero, the cutoff frequency
wy = V4/LC goes to infinity. There is no cutofl frequency for an ideal
transmission line.

22-8 Other circuit elements

We have so far defined only the ideal circuit impedances—the inductance,
the capacitance, and the resistance—as well as the ideal voltage generator. We want
now to show that other elements, such as mutual inductances or transistors or
vacuum tubes, can be described by using only the same basic elements. Suppose
that we have two coils and that on purpose, or otherwise, some flux from one of
the coils links the other, as shown in Fig. 22-26(a). Then the two coils will have a
mutual inductance M such that when the current varies in one of the coils, there
will be a voltage generated in the other. Can we take into account such an effect
in our equivalent circuits? We can in the following way. We have seen that the
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induced emf’s in each of two interacting coils can be written as the sum of two parts:

&1 = —L1 % S M%:
(22.34)

o an r,

B = —Lo gl = M-

The first term comes from the self-inductance of the coil, and the second term
comes from its mutual inductance with the other coil. The sign of the second term
can be plus or minus, depending on the way the flux from one coil links the other.
Making the same approximations we used 1n describing an 1deal inductance, we
would say that the potential difference across the terminals of each coil is equal to
the electromotive force in the coil. Then the two equations of (22.34) are the same
as the ones we would get from the circuit of Fig. 22-26(b), provided the electro-
motive force 1n each of the two circuits shown depends on the current in the
opposite circuit according to the relations

&1 = =iwMls, &g = =iwMI,. (22.35)

So what we can do is represent the effect of the self-inductance in a normal way but
replace the effect of the mutual inductance by an auxiliary ideal voltage generator.
We must in addition, of course, have the equation that relates this emf to the
current in some other part of the circuit; but so long as this equation is linear, we
have just added more linear equations to our circuit equations, and all of our
earlier conclusions about equivalent circuits and so forth are still correct.

In addition to mutual inductances there may also be mutual capacitances.
So far, when we have talked about condensers we have always imagined that there
were only two electrodes, but in many situations, for example in a vacuum tube,
there may be many electrodes close to each other. If we put an electric charge on
any one of the electrodes. its electric field will induce charges on each of the other
electrodes and affect its potential. As an example, consider the arrangement of
four plates shown in Fig. 22-27(a). Suppose these four plates are connected to
external circuits by means of the wires 4, B, C, and D. So long as we are only
worried about electrostatic effects, the equivalent circuit of such an arrangement
of electrodes 1s as shown in part (b) of the figure. The electrostatic interaction of
any electrode with each of the others is equivalent to a capacity between the
two electrodes.

Finally, let’s consider how we should represent such complicated devices as
transistors and radio tubes in an Ac circuit. We should point out at the start that
such devices are often operated in such a way that the relationship between the
currents and voltages is not at all linear. In such cases, those statements we have
made which depend on the hnearity of equations are, of course, no longer correct.
On the other hand, in many applications the operating characteristics are sufficiently
linear that we may consider the transistors and tubes to be linear devices. By this
we mean that the alternating currents in, say, the plate of a vacuum tube are linearly
proportional to the voltages that appear on the other electrodes, say the grid
voltage and the plate voltage. When we have such linear relationships, we can
incorporate the device into our equivalent circuit representation.

As in the case of the mutual inductance, our representation will have to include
auxiliary voltage generators which describe the influence of the voltages or currents
in one part of the device on the currents or voltages in another part. For example,
the plate circuit of a triode can usually be represented by a resistance in series with
an ideal voltage generator whose source strength is proportional to the grid voltage.
We get the equivalent circuit shown n Fig. 22-28.* Similarly, the collector circuit

* The equivalent circurt shown 1s correct only for low frequencies. For high frequencies
the equivalent circuit gets much more complicated and will include various so-called
“parasitic”” capacitances and inductances.

22-17

o
[w)

A B8
(b) F \;,
c D

Fig. 22-27. Equivalent circuit of
mutual capacitance.

PLATE P
GRID G
Vg/
N
THODE [
&=~ (Vg

Fig. 22-28. A low-frequency equiv-
alent circuit of a vacuum triode.



Fig. 22-29. A low-frequency equiv-

alent circuit of a transistor.

EMITTER COLLECTOR

BASE

of a transistor is conveniently represented as a resistor in series with an ideal
voltage generator whose source strength is proportional to the current from the
emitter to the base of the transistor. The equivalent circuit is then like that in Fig.
22-29. So long as the equations which describe the operation are hnear, we can
use such representations for tubes or transistors. Then, when they are incorporated
in a complicated network, our general conclusions about the equivalent representa-
tion of any arbitrary connection of elements is still valid.

There is one remarkable thing about transistor and radio tube circuits which
is different from circuits containing only impedances: the real part of the effective
impedance z.; can become negative. We have seen that the real part of z represents
the loss of energy. But it is the important characteristic of transistors and tubes
that they supply energy to the circuit. (Of course they don’t just “make” energy;
they take energy from the Dc circuits of the power supplies and convert it into
AC energy.) So it 1s possible to have a circuit with a negative resistance. Such a
circuit has the property that if you connect 1t to an impedance with a positive real
part, i.e., a positive resistance, and arrange matters so that the sum of the two
real parts is exactly zero, then there is no dissipation 1n the combined circuit. If
there is no loss of energy, any alternating voltage once started will remain forever.
This is the basic idea behind the operation of an oscillator or signal generator which
can be used as a source of alternating voltage at any desired frequency.
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