7

The Eleetrie Field in Various Circumstances
(Continued)

7-1 Methods for finding the electrostatic field

This chapter is a continuation of our consideration of the characteristics of
electric fields in various particular situations. We shall first describe some of the
more elaborate methods for solving problems with conductors. It is not expected
that these more advanced methods can be mastered at this time. Yet it may be of
interest to have some idea about the kinds of problems that can be solved, using
techniques that may be learned in more advanced courses. Then we take up two
examples in which the charge distribution is neither fixed nor is carried by a con-
ductor, but instead is determined by some other law of physics.

As we found in Chapter 6, the problem of the electrostatic field 1s fundamen-
tally simple when the distribution of charges is specified ; it requires only the evalua-
tion of an integral. When there are conductors present, however, complications
arise because the charge distribution on the conductors is not initially known;
the charge must distribute itself on the surface of the conductor in such a way that
the conductor is an equipotential. The solution of such problems is neither direct
nor simple.

We have looked at an indirect method of solving such problems, in which we
find the equipotentials for some specified charge distribution and replace one of
them by a conducting surface. In this way we can build up a catalog of special
solutions for conductors in the shapes of spheres, planes, etc. The use of images,
described in Chapter 6, is an example of an indirect method. We shall describe
another in this chapter.

If the problem to be solved does not belong to the class of problems for which
we can construct solutions by the indirect method, we are forced to solve the prob-
lem by a more direct method. The mathematical problem of the direct method is
the solution of Laplace’s equation,

vip = 0, 7.1

subject to the condition that ¢ 1s a suitable constant on certain boundaries—the
surfaces of the conductors. Problems which involve the solution of a differential
field equation subject to certain boundary conditions are called boundary-value
problems. They have been the object of considerable mathematical study. In
the case of conductors having complicated shapes, there are no general analytical
methods. Even such a simple problem as that of a charged cylindrical metal can
closed at both ends—a beer can—presents formidable mathematical difficulties.
It can be solved only approximately, using numerical methods. The only general
methods of solution are numerical.

There are a few problems for which Eq. (7.1) can be solved directly. For
example, the problem of a charged conductor having the shape of an ellipsoid of
revolution can be solved exactly in terms of known special functions. The solution
for a thin disc can be obtained by letting the ellipsoid become infinitely oblate.
In a similar manner, the solution for a needle can be obtained by letting the ellipsoid
become infinitely prolate. However, it must be stressed that the only direct methods
of general applicability are the numerical techniques.

Boundary-value problems can also be solved by measurements of a physical
analog. Laplace’s equation arises in many different physical situations: in steady-
state heat flow, in irrotational fluid flow, in current flow in an extended medium,
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and in the deflection of an elastic membrane. It is frequently possible to set up a
physical model which is analogous to an electrical problem which we wish to solve.
By the measurement of a suitable analogous quantity on the model, the solution
to the problem of interest can be determined. An example of the analog technique
is the use of the electrolytic tank for the solution of two-diinensional problems in
electrostatics. This works because the differential equation for the potential in a
uniform conducting mediym is the same as it is for a vacuum.

There are many physical situations in which the variations of the physical
fields in one direction are zero, or can be neglected in comparison with the varia-
tions in the other two directions. Such problems are called two-dimensional; the
field depends on two coordinates only. For example, if we place a long charged
wire along the z-axis, then for points not too far from the wire the electric field
depends on x and y, but not on z; the problem is two-dimensional. Since in a two-
dimensional problem 8/9z = 0, the equation for ¢ in free space is

¥ 9% _
szt 52 = O (1.2)

Because the two-dimensional equation is comparatively simple, there is a wide
range of conditions under which it can be solved analytically. There is, in fact,
a very powerful indirect mathematical technique which depends on a theorem
from the mathematics of functions of a complex variable, and which we will now
describe.

7-2 Two-dimensional fields; functions of the complex variable

The complex variable 3 is defined as
= x4 iy

(Do not confuse 3 with the z-coordinate, which we ignore in the following dis-
cussion because we assume there is no z-dependence of the fields.) Every point in
x and y then corresponds to a complex number 3. We can use 3 as a single
(complex) variable, and with it write the usual kinds of mathematical functions
F(3). For example,

F(3) = 3%,
or

F(3) = 1/3%,
or

F(3) = 3log 3,

and so forth,
Given any particular F(3) we can substitute 3 = x + iy, and we have a
function of x and y—with real and imaginary parts. For example,

32 = (x + )2 = x2 —~ y% + 2xy. 1.3)

Any function F(3) can be written as a sum of a pure real part and a pure
imaginary part, each part a function of x and y:

F(3) = Ux,y) + iV(x, ), 74

where U(x, y) and V(x, y) are real functions. Thus from any complex function
F(3) two new functions U(x, ) and ¥(x, y) can be derived. For example, F(3) = 3?2
gives us the two functions

U(x,y) = x? — y2, (7.5
and
V(x,y) = 2xp. (7.6)

Now we come to a miraculous mathematical theorem which is so delightful
that we shall leave a proof of it for one of your courses in mathematics. (We
should not reveal all the mysteries of mathematics, or that subject matter would
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become too dull.) It is this. For any “ordinary function” (mathematicians will
define it better) the functions U and V automatically satisfy the relations

oU 14

% = o 7.7
14 oU

T (7.8)

It follows immediately that each of the functions U and V satisfy Laplace’s equation:

32U  o’U
o (7.9)
o%v . 3’V
—a——x2 5;5‘ = 0. (7'10)

These equations are clearly true for the functions of (7.5) and (7.6).

Thus, starting with any ordinary function, we can arrive at two functions
U(x, y) and V(x, p), which are both solutions of Laplace’s equation in two dimen-
sions. Each function represents a possible electrostatic potential. We can pick any
function F(3) and 1t should represent some electric field problem—in fact, two
problems, because U and ¥V each represent solutions. We can write down as many
solutions as we wish—Dby just making up functions—then we just have to find the
problem that goes with each solution. It may sound backwards, but it’s a possible
approach.

Fig. 7-1. Two sets of orthogonal curves which can represent
equipotentials in a two-dimensional electrostatic field.

As an example, let’s see what physics the function F(3) = 32 gives us. From
it we get the two potential functions of (7.5) and (7.6). To see what problem the
function U belongs to, we solve for the equipotential surfaces by setting U = A4,
a constant:

x2 — y? = 4.

This is the equation of a rectangular hyperbola. For various values of 4, we get
the hyperbolas shown in Fig. 7-1. When 4 = 0, we get the special case of diagonal
straight lines through the origin.

Such a set of equipotentials corresponds to several possible physical situations.
First, it represents the fine details of the field near the point halfway between two
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Fig. 7-2. The field near the point C
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is the same as that in Fig. 7-1.

Fig. 7-3. The field in a quadrupole
lens.

equal point charges. Second, it represents the field at an inside right-angle corner
of a conductor. If we have two electrodes shaped like those in Fig. 7-2, which are
held at different potentials, the field near the corner marked C will look just like
the field above the origin in Fig. 7-1. The solid lines are the equipotentials, and
the broken lines at right angles correspond to lines of E. Whereas at points or
protuberances the electric field tends to be high, it tends to be low in dents or
hollows.

The solution we have found also corresponds to that for a hyperbola-shaped
electrode near a right-angle corner, or for two hyperbolas at suitable potentials.
You will notice that the field of Fig. 7-1 has an interesting property. The x-com-
ponent of the electric field, E,, is given by

The electric field is proportional to the distance from the axis. This fact is used to
make devices (called quadrupole lenses) that are useful for focusing particle beams
(see Section 29-9). The desired field is usually obtained by using four hyperbola-
shaped electrodes, as shown in Fig. 7-3. For the electric field lines in Fig. 7-3,
we have simply copied from Fig. 7-1 the set of broken-line curves that represent
V = constant. We have a bonus! The curves for V' = constant are orthogonal
to the ones for U = constant because of the equations (7.7) and (7.8). Whenever
we choose a function F(3), we get from U and V both the equipotentials and field
lines. And you will remember that we have solved either of two problems, depend-
ing on which set of curves we call the equipotentials.
As a second example, consider the function

F(3) = V3. (7.11)
If we write
3=x—+ iy = pe®
where
p = Vxi+ y?
and
tan 6 = y/x,
then
F(a) - p1/2919/2
= p'/? (cos g + isin g) .
from which

2 25112 1/2 2 2\1/2 — 1/2
F(3) = [(x +y2) + x] + ,.[(x +y2) x] a1
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The curves for U(x, y) = 4 and V(x,y) = B, using Uand ¥ from Eq. (7.12),
are plotted in Fig. 7-4. Again, there are many possible situations that could be
described by these fields. One of the most interesting is the field near the edge of a
thin plate. If the line B = 0—to the right of the y-axis—represents a thin charged
plate, the field lines near it are given by the curves for various values of 4. The
physical situation is shown in Fig. 7-5.

Further examples are

F(3) = 23/2,y (7.13)
which yields the field outside a rectangular corner

F(3) = log 3, (7.14)
which yields the field for a line charge, and

F(3) = 1/3, (7.15)

which gives the field for the two-dimensional analog of an electric dipole, i.e.,
two parallel line charges with opposite polarities, very close together.

We will not pursue this subject further in this course, but should emphasize
that although the complex variable technique is often powerful, it is limited to
two-dimensional problems; and also, it is an indirect method.

7-3 Plasma oscillations

We consider now some physical situations in which the field is determined
neither by fixed charges nor by charges on conducting surfaces, but by a com-
bination of two physical phenomena. In other words, the field will be governed
simultaneously by two sets of equations: (1) the equations from electrostatics
relating electric fields to charge distribution, and (2) an equation from another
part of physics that determines the positions or motions of the charges in the
presence of the field.

The first example that we will discuss is a dynamic one in which the motion
of the charges is governed by Newton’s laws. A simple example of such a situation
occurs in a plasma, which is an ionized gas consisting of ions and free electrons
distributed over a region in space. The ionosphere—an upper layer of the atmos-
phere—is an example of such a plasma. The uitraviolet rays from the sun knock
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Fig. 7-6. Motion in a plasma wave.
The electrons at the plane a move to o,
and those at b move to b'.

electrons off the molecules of the air, creating free electrons and ions. In such a
plasma the positive 1ons are very much heavier than the electrons, so we may
neglect the ionic motion, in comparison to that of the electrons.

Let ny be the density of electrons in the undisturbed, equilibrium state.
This must also be the density of positive ions, since the plasma is electrically
neutral (when undisturbed). Now we suppose that the electrons are somehow
moved from equilibrium and ask what happens. If the density of the electrons in
one region is increased, they will repel each other and tend to return to their
equilibrium positions. As the electrons move toward their original positions they
pick up kinetic energy, and instead of coming to rest in their equilibrium configura-
tion, they overshoot the mark. They will oscillate back and forth. The situation
1s similar to what occurs in sound waves, tn which the restoring force is the gas
pressure. In a plasma, the restoring force is the electrical force on the electrons.

To simplify the discussion, we will worry only about a situation in which the
motions are all in one dimenston, say x. Let us suppose that the electrons origi-
nally at x are, at the instant 7, displaced from their equilibrium positions by a small
amount s(x, r). Since the electrons have been displaced, their density will, in general,
be changed. The change in density is easily calculated. Referring to Fig. 7-6.
the electrons initially contained between the two planes @ and b have moved and
are now contained between the planes a’ and 5’. The number of electrons that
were between a and b is proportional to nyAx; the same number are now contained
in the space whose width is Ax 4+ As. The density has changed to

_ hoAx ny )
T Ax + As 1+ (as/Ax) (7.16)

If the change in density is small, we can write [using the binomial expansion for

(1 + 9]
0= no(l - f_;) (1.17)

We assume that the positive ions do not move appreciably (because of the much
larger inertia), so their density remains ny. Each electron carries the charge —qe.,
so the average charge density at any point is given by

p = —(n— nyqe,
or

d
o = nog, a% (7.18)

(where we have written the differential form for As/Ax).
The charge density is related to the electric field by Maxwell's equations, 1n
particular,
v E="L. (7.19)
€0

If the problem is indeed one-dimensional (and if there are no other fields but the
one due to the displacements of the electrons), the electric field E has a single
component £,. Equation (7.19), together with (7.18), gives

0E, _ nyq. 9s
Tx T e dx (7.20)
Integrating Eq. (7.20) gives
E, = 1 ¢ 4 k. (7.21)
€o
Since £, = 0 when s = 0, the integration constant K is zero.
The force on an electron 1n the displaced position is
noqf
F, = ——%y, (7.22)

€0
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a restoring force proportional to the displacement s of the electron. This leads to
a harmonic oscillation of the electrons. The equation of motion of a displaced
electron is

d%s _ nog:
We find that s will vary harmonically. Its time variation will be as cos wt, or—
using the exponential notation of Vol, I—as

et (7.24)

The frequency of oscillation w, is determined from (7.23):

2
2 _ Nog. ,
wp = —_—éomg (1.25)

and is called the plasma frequency. 1t is a characteristic number of the plasma.
When dealing with electron charges many people prefer to express their an-
swers in terms of a quantity e? defined by

2
e’ 4‘1‘ = 2.3068 X 10728 newton-meter>. (7.26)
T€Eo

Using this convention, Eq. (7.25) becomes

2
w? = 4%:’—0, (.27

which is the form you will find in most books.

Thus we have found that a disturbance of a plasma will set up free oscillations
of the electrons about their equilibrium positions at the natural frequency w,,
which is proportional to the square root of the density of the electrons. The plasma
electrons behave like a resonant system, such as those we described in Chapter
23 of Vol. L.

This natural resonance of a plasma has some interesting effects. For example,
if one tries to propagate a radiowave through the ionosphere, one finds that it
can penetrate only if its frequency is higher than the plasma frequency. Otherwise
the signal is reflected back. We must use high frequencies if we wish to communi-
cate with a satellite in space. On the other hand, if we wish to communicate with
a radio station beyond the horizon, we must use frequencies lower than the plasma
frequency, so that the signal will be reflected back to the earth.

Another interesting example of plasma oscillations occurs in metals. In a
metal we have a contained plasma of positive ions, and free electrons. The density
ng is very high, so w, is also. But it should still be possible to observe the electron
oscillations. Now, according to quantum mechanics, a harmonic oscillator with
a natural frequency w, has energy levels which are separated by the the energy
increment %w,. If, then, one shoots electrons through, say, an aluminum foil, and
makes very careful measurements of the electron energies on the other side, one
might expect to find that the electrons sometimes lose the energy %w, to the plasma
oscillations. This does indeed happen. It was first observed experimentally in
1936 that electrons with energies of a few hundred to a few thousand electron volts
lost energy in jumps when scattering from or going through a thin metal foil. The
effect was not understood until 1953 when Bohm and Pines* showed that the
observations could be explained in terms of quantum excitations of the plasma
oscillations in the metal.

* For some recent work and a bibliography see C. J. Powell and J. B. Swann, Phys.
Rev. 115, 869 (1959).
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7-4 Colloidal particles in an electrolyte

We turn to another phenomenon in which the locations of charges is governed
by a potential that arises in part from the same charges. The resulting effects
influence in an important way the behavior of colloids. A colloid consists of a
suspension in water of small charged particles which, though microscopic, from
an atomic point of view are still very large. If the colloidal particles were not
charged, they would tend to coagulate into large lumps: but because of their
charge, they repel each other and remain in suspension.

Now if there is also some salt dissolved in the water, it will be dissociated into
positive and negative ions. (Such a solution of ions is called an electrolyte.) The
negative ions are attracted to the colloid particles (assuming their charge is positive)
and the positive ions are repelled. We will determine how the ions which surround
such a colloidal particle are distributed in space.

To keep the ideas simple, we will again solve only a one-dimensional case.
If we think of a colloidal particle as a sphere having a very large radius—on an
atomic scale!—we can then treat a small part of its surface as a plane. (Whenever
one is trying to understand a new phenomenon it is a good idea to take a somewhat
oversimplified model; then, having understood the problem with that model, one
is better able to proceed to tackle the more exact calculation.)

We suppose that the distribution of ions generates a charge density p(x), and
an electrical potential ¢, related by the electrostatic law V29 = —p/e, or, for
fields that vary in only one dimension, by

2
¢ _ _»p. (1.28)

Now supposing there were such a potential ¢(x), how would the ions dis-
tribute themselves in it? This we can determine by the principles of statistical
mechanics. Our problem then is to determine ¢ so that the resulting charge density
from statistical mechanics also satisfies (7.28).

According to statistical mechanics (see Chapter 40, Vol. 1), particles in thermal
equilibrium in a force field are distributed in such a way that the density n of
particles at the position x is given by

n(x) = nge U@, (7.29)

where U(x) is the potential energy, k is Boltzmann’s constant, and 7 is the absolute
temperature,

We assume that the ions carry one electronic charge, positive or negative.
At the distance x from the surface of a colloidal particle, a positive ion will have
potential energy g.¢(x), so that

U(x) = geo(x).

The density of positive ions, ., is then

ni(x) = noe @K,
Similarly, the density of negative 1ons is
n_(x) = ”Oe+qe¢(z)/’€T'
The total charge density is
P = gy — qon_,
or
p = qeno(e—ch’/kT_e-+—qe¢/k7')' (7.30)

Combining this with Eq. (7.28), we find that the potential ¢ must satisfy

2 . m
gx_‘z = __9:_’010 (e~ 4%/KT _ gHact/kTy (7.31)



This equation is readily solved in general [multiply both sides by 2(d¢/dx), and
integrate with respect to x], but to keep the problem as simple as possible, we will
consider here only the limiting case in which the potentials are small or the tem-
perature T is high. The case where ¢ is small corresponds to a dilute solution. For
these cases the exponent is small, and we can approximate

etihT — | o I8 (7.32)
Equation (7.31) then gives

d® 2n0q2

AR @

Notice that this time the sign on the right is positive. The solutions for ¢ are not
oscillatory, but exponential.
The general solution of Eq. (7.33) is

¢ = Ae /P 4 Bet*!P, (7.34)
with
D? = ___26’22‘; (1.35)

The constants 4 and B must be determined from the conditions of the problem.
In our case, B must be zero; otherwise the potential would go to infinity for large

x. So we have that
¢ = Ae~*P, (7.36)

in which 4 is the potential at x = 0, the surface of the colloidal particle.

¢!

Fig. 7-7. The variation of the po-
tential near the surface of a colloidal
particle. D is the Debye length.
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The potential decreases by a factor 1/e each time the distance increases by D,
as shown in the graph of Fig. 7-7. The number D is called the Debye length, and
is a measure of the thickness of the ion sheath that surrounds a large charged
particle in an electrolyte. Equation (7.36) says that the sheath gets thinner with
increasing concentration of the ions (n,) or with decreasing temperature.

The constant 4 in Eq. (7.36) is easily obtained if we know the surface charge o
on the colloid particle. We know that

E, = E,(0) = gE (1.37)
But E is also the gradient of ¢:
- _ % __ 4
E.(0) = Al = + % (7.38)
from which we get
4=22. (7.39)
€p
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Using this result in (7.36), we find (by taking x = 0) that the potential of the
colloidal particle is

6(0) = "G—D (7.40)

You will notice that this potential is the same as the potential difference across a
condenser with a plate spacing D and a surface charge density o.

We have said that the colloidal particles are kept apart by their electrical
repulsion. But now we see that the field a little way from the surface of a particle
1s reduced by the ion sheath that collects around it. If the sheaths get thin enough,
the particles have a good chance of knocking against each other. They will then
stick, and the colloid will coagulate and precipitate out of the liquid. From our
analysis, we understand why adding enough salt to a colloid should cause it to
precipitate out. The process is called “salting out a colloid.”

Another interesting example is the effect that a salt solution has on protein
molecules. A protein molecule is a long, complicated, and fiexible chain of amino
acids. The molecule has various charges on it, and it sometimes happens that
there is a net charge, say negative, which is distributed along the chain. Because
of mutual repulsion of the negative charges, the protein chain is kept stretched out.
Also, if there are other similar chain molecules present in the solution, they will
be kept apart by the same repulsive effects. We can, therefore, have a suspension
of chain molecules in a liquid. But if we add salt to the liquid we change the proper-
ties of the suspension. As salt is added to the solution, decreasing the Debye
distance, the chain molecules can approach one another, and can also coil up.
If enough salt is added to the solution, the chain molecules will precipitate out of
the solution. There are many chemical effects of this kind that can be understood
in terms of electrical forces.

7-5 The electrostatic field of a grid

As our last example, we would like to describe another interesting property
of electric fields. It is one which is made use of in the design of electrical instru-
ments, in the construction of vacuum tubes, and for other purposes. This is the
character of the electric field near a grid of charged wires. To make the problem
as simple as possible, let us consider an array of parallel wires lying in a plane,
the wires being infinitely long and with a uniform spacing between them.

If we look at the field a large distance above the plane of the wires, we see a
constant electric field, just as though the charge were uniformly spread over a
plane. As we approach the grid of wires, the field begins to deviate from the
uniform field we found at large distances from the grid. We would like to estimate
how close to the grid we have to be in order to see appreciable variations in the
potential. Figure 7-8 shows a rough sketch of the equipotentials at various
distances from the grid. The closer we get to the grid, the larger the variations.
As we travel parallel to the grid, we observe that the field fluctuates in a periodic
manner.
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Fig. 7-8. Equipotential surfaces
above a uniform grid of charged wires.
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Now we have seen (Chapter 50, Vol. I) that any periodic quantity can bé
expressed as a sum of sine waves (Fourier’s theorem). Let’s see if we can find a
suitable harmonic function that satisfies our field equations.

If the wires lie in the xy-plane and run parallel to the y-axis, then we might
try terms like
2mnx

a 2

o(x, z) = F,(z)cos (7.41)
where a is the spacing of the wires and » is the harmonic number. (We have as-
sumed long wires, so there should be no variation with y.) A complete solution
would be made up of a sum of such terms forn = 1,2,3,....

If this is to be a valid potential, it must satisfy Laplace’s equation in the
region above the wires (where there are no charges). That is,

% , %
w Tz =0

Trying this equation on the ¢ in (7.41), we find that

4mn? 2anx  d°F, 2mhnx
=z F,(z) cos 2 + o cos P 0, (7.42)
or that F,(z) must satisfy
d’F, 4Ar’n®
= F,. (7.43)
So we must have
F, = A,e™?/%, (7.44)
where
zo = 2—7‘;” (7.45)

We have found that if there is a Fourier component of the field of harmonic »,
that component will decrease exponentially with a characteristic distance zy, =
a/2wn. For the first harmonic (n = 1), the amplitude falls by the factor e—2"
(a large decrease) each time we increase z by one grid spacing a. The other har-
monics fall off even more rapidly as we move dway from the grid. We see that if
we are only a few times the distance a away from the grid, the field is very nearly
uniform, i.e., the oscillating terms are small. There would, of course, always
remain the “zero harmonic” field

¢0o = —Egz

to give the uniform field at large z. For a complete solution, we would combine
this term with a sum of terms like (7.41) with F, from (7.44). The coefficients 4,
would be adjusted so that the total sum would, when differentiated, give an electric
field that would fit the charge density M of the grid wires.

The method we have just developed can be used to explain why electrostatic
shielding by means of a screen is often just as good as with a solid metal sheet.
Except within a distance from the screen a few times the spacing of the screen
wires, the fields inside a closed screen are zero. We see why copper screen—
lighter and cheaper than copper sheet—is often used to shield sensitive electrical
equipment from external disturbing fields.
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