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Application of Gauss’ Law

5-1 Electrostatics is Gauss’ law plus . . .

There are two laws of electrostatics: that the flux of the electric field from a
volume is proportional to the charge inside—Gauss’ law, and that the circulation
of the electric field is zero—E is a gradient. From these two laws, all the predictions
of electrostatics follow. But to say these things mathematically is one thing; to
use them easily, and with a certain amount of ingenuity, is another. In this chapter
we will work through a number of calculations which can be made with Gauss’ law
directly. We will prove theorems and describe some effects, particularly in con-
ductors, that can be understood very easily from Gauss’ law. Gauss’ law by itself
cannot give the solution of any problem because the other law must be obeyed too.
So when we use Gauss’ law for the solution of particular problems, we will have to
add something to it. We will have to presuppose, for instance, some idea of how
the field looks—based, for example, on arguments of symmetry. Or we may have
to introduce specifically the idea that the field is the gradient of a potential.

5-2 Equilibrium in an electrostatic field

Consider first the following question: When can a point charge be in stable
mechanical equilibrium in the electric field of other charges? As an example,
imagine three negative charges at the corners of an equilateral triangle in a hori-
zontal plane. Would a positive charge placed at the center of the triangle remain
there? (It will be simpler if we ignore gravity for the moment, although including
it would not change the results.) The force on the positive charge is zero, but
is the equilibrium stable? Would the charge return to the equilibrium position if
displaced slightly? The answer is no.

There are no points ‘of stable equilibrium in any electrostatic field—except
right on top of another charge. Using Gauss’ law, it is easy to see why. First, for a
charge to be in equilibrium at any particular point Py, the field must be zero.
Second, if the equilibrium is to be a stable one, we require that if we move the
charge away from P, in any direction, there should be a restoring force directed
opposite to the displacement. The electric field at all nearby points must be
pointing inward—toward the point P,. But that is in violation of Gauss’ law if
there is no charge at P, as we can easily see.

Consider a tiny imaginary surface that encloses Py, as in Fig. 5-1. If the
electric field everywhere in the vicinity is pointed toward P, the surface integral
of the normal component is certainly not zero. For the case shown in the figure,
the flux through the surface must be a negative number. But Gauss’ law says that
the flux of electric field through any surface is proportional to the total charge
inside. If there is no charge at P, the field we have imagined violates Gauss’ law.
It is impossible to balance a positive charge in empty space—at a point where
there is not some negative charge. A positive charge can be in equilibrium if it is
in the. middle of a distributed negative charge. Of course, the negative charge
distribution would have to be held in place by other than electrical forces!

Our result has been obtained for a point charge. Does the same conclusion
hold for a complicated arrangement of charges held together in fixed relative
positions—with rods, for example? We consider the question for two equal
charges fixed on a rod. Is it possible that this combination can be in equilibrium
in some electrostatic field? The answer is again no. The total force on the rod
cannot be restoring for displacements in every direction.

5-1

5-1

52

5-3

5-5

5-7

5-9
5-10

/
/

/
i

Fig. 5-1.

o

Electrostatics is Gauss’ law
plus...

Equilibrium in an electrostatic
field

Equilibrium with conductors
Stability of atoms

The field of a line charge

A sheet of charge; two sheets

A sphere of charge; a spherical
shell

Is the field of a point charge
exactly 1/r*?

The fields of a conductor

The field in a cavity of a
conductor

/’— \
A
Re
L—Imaginary
surface

__t_ ,\' surrounding P,

If Py were a position of

stable equilibrium for a positive charge,
the electric field everywhere in the
neighborhood would point toward Py.



Call F the total force on the rod in any position—F is then a vector field.
Following the argument used above, we conclude that at a position of stable equi-
librium, the divergence of F must be a negative number. But the total force on the
rod is the first charge times the field at its position, plus the second charge times
the field at its position:

F = q:E; + q:E,. G.D

The divergence of F is given by
V-F=q,(V-Ey) + q2(V " E»)

If each of the two charges g, and g is in free space, both V - E; and V - E; are
zero, and V - F is zero—not negative, as would be required for equilibrium. You
can see that an extension of the argument shows that no rigid combination of any
number of charges can have a position of stable equilibrium in an electrostatic
field in free space.
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Fig. 5-2. A charge can be in equili- Hollow
brium if there are mechanical constraints. Tube

Now we have not shown that equilibrium is forbidden if there are pivots or
other mechanical constraints. As an example, consider a hollow tube in which a
charge can move back and forth freely, but not sideways. Now it is very easy to
devise an electric field that points inward at both ends of the tube if it is allowed
that the field may point laterally outward near the center of the tube. We simply
place positive charges at each end of the tube, as in Fig. 5-2. There can now be an
equilibrium point even though the divergence of E is zero. The charge, of course,
would not be in stable equilibrium for sideways motion were it not for “non-
electrical” forces from the tube walls.

5-3 Equilibrium with conductors

There is no stable spot in the field of a system of fixed charges. What about
a system of charged conductors? Can a system of charged conductors produce a
field that will have a stable equilibrium point for a point charge? (We mean at a
point other than on a conductor, of course.) You know that conductors have the
property that charges can move freely around in them. Perhaps when the point
charge is displaced slightly, the other charges on the conductors will move in a way
that will give a restoring force to the point charge? The answer is still no—al-
though the proof we have just given doesn’t show it. The proof for this case is
more difficult, and we will only indicate how it goes.

First, we note that when charges redistribute themselves on the conductors,
they can only do so if their motion decreases their total potential energy. (Some
energy is lost to heat as they move in the conductor.) Now we have already shown
that if the charges producing a field are stationary, there is, near any zero point Py
in the field, some direction for which moving a point charge away from P, will
decrease the energy of the system (since the force is away from Py). Any readjust-
ment of the charges on the conductors can only lower the potential energy still
more, so (by the principle of virtual work) their motion will only increase the force
in that particular direction away from P, and not reverse it.

Our conclusions do not mean that it is not possible to balance a charge by
electrical forces. It is possible if one is willing to control the locations or the sizes
of the supporting charges with suitable devices. You know that a rod standing on
its point in a gravitational field is unstable, but this does not prove that it cannot
be balanced on the end of a finger. Similarly, a charge can be held in one spot by
electric fields if they are variable. But not with a passive—that is, a static—system.

5-2




54 Stability of atoms

If charges cannot be held stably in position, it is surely not proper to imagine
matter to be made up of static point charges (electrons and protons) governed only
by the laws of electrostatics. Such a static configuration is impossible; it would
collapse! )

It was once suggested that the positive charge of an atom could be distributed
uniformly in a sphere, and the negative charges, the electrons, could be at rest
inside the positive charge, as shown in Fig. 5-3. This was the first atomic model,
proposed by Thompson. But Rutherford concluded from the experiment of Geiger
and Marsden that the positive charges were very much concentrated, in what he
called the nucleus. Thompson’s static model had to be abandoned. Rutherford
and Bohr then suggested that the equilibrium might be dynamic, with the electrons
revolving in orbits, as shown in Fig. 5-4. The electrons would be kept from falling
in toward the nucleus by their orbital motion. We already know at least one
difficulty with this picture. With such motion, the electrons would be accelerating
(because of the circular motion) and would, therefore, be radiating energy. They
would lose the kinetic energy required to stay in orbit, and would spiral in toward
the nucleus. Again unstable!

The stability of the atoms is now explained in terms of quantum mechanics.
The electrostatic forces pull the electron as close to the nucleus as possible, but the
electron is compelled to stay spread out in space over a distance given by the
uncertainty principle. If it were confined in too small a space, it would have a
great uncertainty in momentum. But that means that it would have a high ex-
pected energy—which it would use to escape from the electrical attraction. The
net result is an electrical equilibrium not too different from the idea of Thompson
—only it is the negative charge that is spread out (because the mass of the electron
is so much smaller than the mass of the proton).

5-5 The field of a line charge

Gauss’ law can be used to solve a number of electrostatic field problems in-
volving a special symmetry—usually spherical, cylindrical, or planar symmetry.
In the remainder of this chapter we will apply Gauss’ law to a few such problems.
The ease with which these problems can be solved may give the misleading impres-
sion that the method is very powerful, and that one should be able to go on to
many other problems. It is unfortunately not so. One soon exhausts the list of
problems that can be solved easily with Gauss’ law. In later chapters we will
develop more powerful methods for investigating electrostatic fields.

As our first example, we consider a system with cylindrical symmetry. Suppose
that we have a very long, uniformly charged rod. By this we mean that electric
charges are distributed uniformly along an indefinitely long straight line, with the
charge N per unit length. We wish to know the electric field. The problem can, of
course, be solved by integrating the contribution to the field from every part of
the line. We are going to do it without integrating, by using Gauss’ law and some
guesswork. First, we surmise that the electric field will be directed radially outward
from the line. Any axial component from charges on one side would be accom-
panied by an equal axial component from charges on the other side. The result
could only be a radial field. It also seems reasonable that the field should have the
same magnitude at all points equidistant from the line. This is obvious. (It may
not be easy to prove, but it is true if space is symmetric—as we believe it is.)

We can use Gauss’ law in the following way. We consider an imaginary
surface in the shape of a cylinder coaxial with the line, as shown in Fig. 5-5.
According to Gauss’ law, the total flux of E from this surface is equal to the charge
inside divided by €o. Since the field is assumed to be normal to the surface, the
normal component is the magnitude of the field. Let’s callit E. Also, let the radius
of the cylinder be r, and its length be taken as one unit, for convenience. The flux
through the cylindrical surface is equal to E times the area of the surface, which is
27r. The flux through the two end faces is zero because the electric field is tan-
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gential to them. The total charge inside our surface is just A, because the length of
the line inside is one unit. Gauss’ law then gives

E-2mr = X e,

— A .
T 2megr

(5.2)

The electric field of a line charge depends inversely on the first power of the
distance from the line.

5-6 A sheet of charge; two sheets

As another example, we will calculate the field from a uniform plane sheet of
charge. Suppose that the sheet is infinite in extent and that the charge per unit
area is 0. We are going to take another guess. Considerations of symmetry lead
us to believe that the field direction is everywhere normal to the plane, and if we
have no field from any other charges in the world, the fields must be the same (in
magnitude) on each side. This time we choose for our Gaussian surface a rec-
tangular box that cuts through the sheet, as shown in Fig. 5-6. The two faces
parallel to the sheet will have equal areas, say 4. The field is normal to these two
faces, and parallel to the other four. The total flux is E times the area of the first
face, plus E times the area of the opposite face—with no contribution from the
other four faces. The total charge enclosed in the box is 0 4. Equating the flux to

the charge inside, we have 4 -
EA + EA = 52_
0

from which o 53)

E= 2€0

a simple but important result.

You may remember that the same result was obtained in an earlier chapter
by an integration over the entire surface. Gauss’ law gives us the answer, in this
instance, much more quickly (although it is not as generally applicable as the
earlier method).

We emphasize that this result applies only to the field due to the charges on
the sheet. If there are other charges in the neighborhood, the total field near the
sheet would be the sum of (5.3) and the field of the other charges. Gauss’ law
would then tell us only that

E1+E2={—0,

(5.4)
where E, and E, are the fields directed outward on each side of the sheet.

The problem of two parallel sheets with equal and opposite charge densities,
+0 and —a, is equally simple if we assume again that the outside world is quite
symmetric. Either by superposing two solutions for a single sheet or by construct-
ing a gaussian box that includes both sheets, it is easily seen that the field is zero
outside of the two sheets (Fig. 5~7a). By considering a box that includes only one
surface or the other, as in (b) or (c) of the figure, it can be seen that the field
between the sheets must be twice what it is for a single sheet. The result is

E (between the sheets) = /e,
E (outside) = 0.

(5.5
(5.6)

5-7 A sphere of charge; a spherical shell

We have already (in Chapter 4) used Gauss’ law to find the field outside a
uniformly charged spherical region. The same method can also give us the field
at points inside the sphere. For example, the computation can be used to obtain
a good approximation to the field inside an atomic nucleus. In spite of the fact
that the protons in a nucleus repel each other, they are, because of the strong nu-
clear forces, spread nearly uniformly throughout the body of the nucleus.
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Suppose that we have a sphere of radius R filled uniformly with charge. Let
p be the charge per unit volume. Again using arguments of symmetry, we assume
the field to be radial and equal in magnitude at all points at the same distance
from the center. To find the field at the distance » from the center, we take a
spherical gaussian surface of radius r (r < R), as shown in Fig, 5-8. The flux out
of this surface is
47r2E.

The charge inside our gaussian surface is the volume inside times p, or
47r2p.
Using Gauss’ law, it follows that the magnitude of the field is given by

E = 5‘1 (r < R). (5.7)
€9
You can see that this formula gives the proper result for r = R. The electric field
is proportional to the radius and is directed radially outward.

The arguments we have just given for a uniformly charged sphere can be
applied also to a thin spherical shell of charge. Assuming that the field is every-
where radial and is spherically symmetric, one gets immediately from Gauss’
law that the field outside the shell is like that of a point charge, while the field
everywhere inside the shell is zero. (A gaussian surface inside the shell will con-
tain no charge.)

5-8 Is the field of a point charge exactly 1/r’?

If we look in a little more detail at how the field inside the shell gets to be zero,
we can see more clearly why it is that Gauss’ law is true only because the coulomb
force depends exactly on the square of the distance. Consider any point P inside
a uniform spherical shell of charge. Imagine a small cone whose apex is at P and
which extends to the surface of the sphere, where it cuts out a small surface area
Aay, as in Fig. 5-9. An exactly symmetric cone diverging from the opposite side
of P would cut out the surface area Aay. If the distances from P to these two ele-
ments of area are r; and rs, the areas are in the ratio

(You can show this by geometry for any point P inside the sphere.)
If the surface of the sphere is uniformly charged, the charge Aq on each of the
elements of area is proportional to the area, so
| Agy _ Aay

aAgq;  Aay

Coulomb’s law then says that the magnitudes of the fields produced at P by these
two surface elements are in the ratio
E, _ g2/ r%

E]_ - ql/r'f’

The fields cancel exactly. Since all parts of the surface can be paired off in the same
way, the total field at P is zero. But you can see that it would not be so if the
exponent of » in Coulomb’s law were not exactly two.

The validity of Gauss’ law depends upon the inverse square law of Coulomb.
If the force law were not exactly the inverse square, it would not be true that the
field inside a uniformly charged sphere would be exactly zero. For instance, if the
force varied more rapidly, like, say, the inverse cube of 7, that portion of the sur-
face which is nearer to an interior point would produce a field which is larger than
that which is farther away, resulting in a radial inward field for a positive surface
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charge. These conclusions suggest an elegant way of finding out whether the in-
verse square law is precisely correct. We need only determine whether or not the
field inside of a uniformly charged spherical shell is precisely zero.

It is lucky that such a method exists. It is usually difficult to measure a physical
quantity to high precision—a one percent result may not be too difficult, but how
would one go about measuring, say, Coulomb’s law to an accuracy of one part in
a billion? It is almost certainly not possible with the best available techniques to
measure the force between two charged objects with such an accuracy. But by
determining only that the electric fields inside a charged sphere are smaller than
some value we can make a highly accurate measurement of the correctness of
Gauss’ law, and hence of the inverse square dependence of Coulomb’s law. What
one does, in effect, is compare the force law to an ideal inverse square. Such com-
parisons of things that are equal, or nearly so, are usually the bases of the most
precise physical measurements.

How shall we observe the field inside a charged sphere? One way is to try
to charge an object by touching it to the inside of a spherical conductor. You
know that if we touch a small metal ball to a charged object and then touch it to
an electrometer the meter will become charged and the pointer will move from
zero (Fig. 5-10a). The ball picks up charge because there are electric fields outside
the charged sphere that cause charges to run onto (or off) the little ball. If you do
the same experiment by touching the little ball to the inside of the charged sphere,
you find that no charge is carried to the electrometer. With such an experiment
you can easily show that the field inside is, at most, a few percent of the field out-
side, and that Gauss’ law is at least approximately correct.

It appears that Benjamin Franklin was the first to notice that the field inside a
conducting shell is zero. The result seemed strange to him. When he reported his
observation to Priestley, the latter suggested that it might be connected with an
inverse square law, since it was known that a spherical shell of matter produced
no gravitational field inside. But Coulomb didn’t measure the inverse square
dependence until 18 years later, and Gauss’ law came even later still.

Gauss’ law has been checked carefully by putting an electrometer inside a
large sphere and observing whether any deflections occur when the sphere is
charged to a high voltage. A null result is always obtained. Knowing the geometry
of the apparatus and the sensitivity of the meter, it is possible to compute the
minimum field that would be observed. From this number it is possible to place an
upper limit on the deviation of the exponent from two. If we write that the elec-
trostatic force depends on r—2*¢, we can place an upper bound on e. By this method
Maxwell determined that e was less than 1/10,000. The experiment was repeated
and improved upon in 1936 by Plimpton and Laughton. They found that Coulomb’s
exponent differs from two by less than one part in a billion.

Now that brings up an interesting question: How accurate do we know this
Coulomb law to be in various circumstances? The experiments we just described
measure the dependence of the field on distance for distances of some tens of
centimeters. But what about the distances inside an atom—in the hydrogen
atom, for instance, where we believe the electron is attracted to the nucleus by
the same inverse square law? It is true that quantum mechanics must be used for
the mechanical part of the behavior of the electron, but the force is the usual
electrostatic one. In the formulation of the problem, the potential energy of an
electron must be known as a function of distance from the nucleus, and Coulomb’s
law gives a potential which varies inversely with the first power of the distance.
How accurately is the exponent known for such small distances? As a result of
very careful measurements in 1947 by Lamb and Retherford on the relative
positions of the energy levels of hydrogen, we know that the exponent is correct
again to one part in a billion on the atomic scale—that is, at distances of the order
of one angstrom (108 centimeter).

The accuracy of the Lamb-Retherford measurement was possible again
because of a physical “accident.” Two of the states of a hydrogen atom are
expected to have almost indentical energies only if the potential varies exactly as
1/r. A measurement was made of the very slight difference in energies by finding
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the frequency w of the photons that are emitted or absorbed in the transition from
one state to the other, using for the energy difference AE = #w. Computations
showed that AE would have been noticeably different from what was observed if
the exponent in the force law 1/r2 differed from 2 by as much as one part in a billion.

Is the same exponent correct at still shorter distances? From measurements in
nuclear physics it is found that there are electrostatic forces at typical nuclear
distances—at about 102 centimeter—and that they still vary approximately as
the inverse square. We shall look at some of the evidence in a later chapter.
Coulomb’s law is, we know, still valid, at least to some extent, at distances of the
order of 1013 centimeter.

How about 10~ !* centimeter? This range can be investigated by bombarding
protons with very energetic electrons and observing how they are scattered. Re-
sults to date seem to indicate that the law fails at these distances. The electrical
force seems to be about 10 times too weak at distances less than 10~ 14 centimeter.
Now there are two possible explanations. One is that the Coulomb law does not
work at such small distances; the other is that our objects, the electrons and
protons, are not point charges. Perhaps either the electron or proton, or both, is
some kind of a smear. Most physicists prefer to think that the charge of the proton
is smeared. We know that protons interact strongly with mesons. This implies
that a proton will, from time to time, exist as a neutron with a 7+ meson around
it. Such a configuration would act—on the average—like a little sphere of positive
charge. We know that the field from a sphere of charge does not vary as 1/r? all
the way into the center. It is quite likely that the proton charge is smeared, but
the theory of pions is still quite incomplete, so it may also be that Coulomb’s law
fails at very small distances. The question is still open.

One more point: The inverse square law is valid at distances like one meter
and also at 107 '%m; but is the coefficient 1/47e, the same? The answer is yes;
at least to an accuracy of 15 parts in a million.

We go back now to an important matter that we slighted when we spoke of
the experimental verification of Gauss’ law. You may have wondered how the
experiment of Maxwell or of Plimpton and Laughton could give such an accuracy
unless the spherical conductor they used was a perfect sphere. An accuracy of
one part in a billion is really something to achieve, and you might well ask whether
they could make a sphere which was that precise. There are certain to be slight
irregularities in any real sphere and if there are irregularities, will they not produce
fields inside? We wish to show now that it is not necessary to have a perfect sphere.
It is possible, in fact, to show that there is no field inside a closed conducting shell
of any shape. In other words, the experiments depended on 1/r%, but had nothing
1o do with the surface being a sphere (except that with a sphere it is easier to cal-
culate what the fields would be if Coulomb had been wrong), so we take up that
subject now. To show this, it is necessary to know some of the properties of
electrical conductors.

5-9 The fields of a conductor

An electrical conductor is a solid that contains many “free” electrons. The
electrons can move around freely in the material, but cannot leave the surface.
In a metal there are so many free electrons that any electric field will set large
numbers of them into motion. Either the current of electrons so set up must be
continually kept moving by external sources of energy, or the motion of the
electrons will cease as they discharge the sources producing the initial field. In
“electrostatic’ situations, we do not consider continuous sources of current (they
will be considered later when we study magnetostatics), so the electrons move only
until they have arranged themselves to produce zero electric field everywhere
inside the conductor. (This usually happens in a small fraction of a second.) If
there were any field left, this field would urge still more electrons to move; the
only electrostatic solution is that the field is everywhere zero inside.

Now consider the interior of a charged conducting object. (By “interior” we
mean in the metal itself.) Since the metal is a conductor, the interior field must
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be zero, and so the gradient of the potential ¢ is zero. That means that ¢ does not
vary from point to point. Every conductor is an equipotential region, and its
surface is an equipotential surface. Since in a conducting material the electric
field is everywhere zero, the divergence of E is zero, and by Gauss’ law the charge
density in the interior of the conductor must be zero.

If there can be no charges in a conductor, how can it ever be charged? What
do we mean when we say a conductor is “charged”? Where are the charges?
The answer is that they reside at the surface of the conductor, where there are
strong forces to keep them from leaving—they are not completely “free.”” When
we study solid-state physics, we shall find that the excess charge of any conductor
is on the average within one or two atomic layers of the surface. For our present
purposes, it is accurate enough to say that if any charge is put on, or in, a conductor
it all accumulates on the surface; there is no charge in the interior of a conductor.

We note also that the electric field just outside the surface of a conductor must
be normal to the surface. There can be no tangential component. If there were a
tangential component, the electrons would move along the surface; there are no
forces preventing that. Saying it another way: we know that the electric field lines
must always go at right angles to an equipotential surface.

We can also, using Gauss’ law, relate the field strength just outside a conductor
to the local density of the charge at the surface. For a gaussian surface, we take a
small cylindrical box half inside and half outside the surface, like the one shown
in Fig. 5-11. There is a contribution to the total flux of E only from the side of the
box outside the conductor. The field just outside the surface of a conductor is then

Qutside a conductor:

E=—,
€o

(5.8)

where o is the Jocal surface charge density.

Why does a sheet of charge on a conductor produce a different field than just
a sheet of charge? In other words, why is (5.8) twice as large as (5.3)? The reason,
of course, is that we have not said for the conductor that there are no ‘‘other”
charges around. There must, in fact, be some to make E = 0 in the conductor.
The charges in the immediate neighborhood of a:point P on the surface do, in fact,
give a field Ejoeal = O10ca1/2€0 both inside and outside the surface. But all the
rest of the charges on the conductor “conspire” to produce an additional field at
the point P equal in magnitude to Ej..a;. The total field inside goes to zero and
the field outside to 2Ej,e = 0/€.

5-10 The field in a cavity of a conductor

We return now to the problem of the hollow container—a conductor with a
cavity. There is no field in the metal, but what about in the cavity? We shall show
that if the cavity is empty then there are no fields in it, no matter what the shape of
the conductor or the cavity—say for the one in Fig. 5-12. Consider a gaussian
surface, like S in Fig. 5-12, that encloses the cavity but stays everywhere in the
conducting material. Everywhere on S the field is zero, so there is no flux through
S and the rotal charge inside S is zero. For a spherical shell, one could then argue
from symmetry that there could be no charge inside. But, in general, we can only
say that there are equal amounts of positive and negative charge on the inner
surface of the conductor. There could be a positive surface charge on one part
and a negative one somewhere else, as indicated in Fig. 5~12. Such a thing cannot
be ruled out by Gauss’ law.

What really happens, of course, is that any equal and opposite charges on
the inner surface would slide around to meet each other, cancelling out completely.
We can show that they must cancel completely by using the law that the circulation
of E is always zero (electrostatics). Suppose there were charges on some parts of
the inner surface. We know that there would have to be an equal number of op-
posite charges somewhere else. Now any lines of E would have to start on the
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positive charges and end on the negative charges (since we are considering only the
case that there are no free charges in the cavity). Now imagine a loop I' that crosses
the cavity along a line of force from some positive charge to some negative charge,
and returns to its starting point via the conductor (as in Fig. 5~-12). The integral
along such a line of force from the positive to the negative charges would not be
zero. The integral through the metal is zero, since E = 0. So we would have

y{E-ds = 0777

But the line integral of E around any closed loop in an electrostatic field is always
zero. So there can be no fields inside the empty cavity, nor any charges on the
inside surface.

You should notice carefully one important qualification we have made.
We have always said “inside an empty” cavity. If some charges are placed at some
fixed locations in the cavity—as on an insulator or on a small conductor insulated
from the main one—then there can be fields in the cavity. But then that is not an
“‘empty”’ cavity.

We have shown that if a cavity is completely enclosed by a conductor, no
static distribution of charges outside can ever produce any fields inside. This
explains the principle of “shielding” electrical equipment by placing it in a metal
can. The sa reguments can be used to show that no static distribution of charges
inside a clo:eg conduc?or can produce any fields outside. Shielding works both
ways! In electrostatics—but not in varying fields—the fields on the two sides of a
closed conducting shell are completely independent.

Now you see why it was possible to check Coulomb’s law to such a great
precision. The shape of the hollow shell used doesn’t matter. It doesn’t need to
be spherical; it could be square! If Gauss’ law is exact, the field inside is always
zero. Now you also understand why it is safe to sit inside the high-voltage terminal
of a million-volt van de Graaff generator, without worrying about getting a
shock—because of Gauss’ law.
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