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49-1 The reflection of waves

This chapter will consider some of the remarkable phenomena which are a
result of confining waves in some finite region. We will be led first to discover a
few particular facts about vibrating strings, for example, and then the generaliza-
tion of these facts will give us a principle which is probably the most far-reaching
principle of mathematical physics.

Our first example of confining waves will be to confine a wave at one boundary.
Let us take the simple example of a one-dimensional wave on a string. One could
equally well consider sound in one dimension against a wall, or other situations
of a similar nature, but the example of a string will be sufficient for our present
purposes. Suppose that the string is held at one end, for example by fastening it
to an “infinitely solid”” wall. This can be expressed mathematically by saying that
the displacement y of the string at the position x = 0 must be zero, because the
end does not move. Now if it were not for the wall, we know that the general
solution for the motion is the sum of two functions, F(x — c¢f) and G(x + cf),
the first representing a wave travelling one way in the string, and the second a
wave travelling the other way in the string:

y=Fx—ct)+ Gx + ct) (49.1)

is the general solution for any string. But we have next to satisfy the condition
that the string does not move at one end. If we put x = 0 in Eq. (49.1) and ex-
amine y for any value of ¢, we get y = F(—cf) + G(+-ctf). Now if this is to be
zero for all times, it means that the function G(cf) must be —F(—c?). In other
words, G of anything must be — F of minus that same thing. If this result is put
back into Eq. (49.1), we find that the solution for the problem is

y=Fx—c) — F(—x — ci). 49.2)

It is easy to check that we will get y = 0 if we set x = 0.

Figure 49-1 shows a wave travelling in the negative x-direction near x = 0,
and a hypothetical wave travelling in the other direction reversed in sign and on
the other side of the origin. We say hypothetical because, of course, there is no
string to vibrate on that side of the origin. The total motion of the string is to be
regarded as the sum of these two waves in the region of positive x. As they reach
the origin, they will always cancel at x = 0, and finally the second (reflected)
wave will be the only one to exist for positive x and it will, of course, be travelling
in the opposite direction. These results are equivalent to the following statement:
if a wave reaches the clamped end of a string, it will be reflected with a change in
sign. Such a reflection can always be understood by imagining that what is coming
to the end of the string comes out upside down from behind the wall. In short, if
we assume that the string is infinite and that whenever we have a wave going one
way we have another one going the other way with the stated symmetry, the dis-
placement at x = 0 will always be zero and it would make no difference if we
clamped the string there.

The next point to be discussed is the reflection of a periodic wave. Suppose
that the wave represented by F(x — cf) is a sine wave and has been reflected; then
the reflected wave —F(—x — ct) is also a sine wave of the same frequency, but
travelling in the opposite direction. This situation can be most simply
described by using the complex function notation: F(x — cf) = e““™*/* and
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F(—x — ¢f) = “%t/9 It can be seen that if these are substituted in (49.2)
and if x is set equal to 0, then y = O for all values of 7, so it satisfies the necessary
condition. Because of the properties of exponentials, this can be written in a
simpler form:

y = e®i(e™™° — &%) = —2ie™!sin (wx/c). (49.3)

There is something interesting and new here, in that this solution tells us that
if we look at any fixed x, the string oscillates at frequency w. No matter where this
point is, the frequency is the same! But there are some places, in particular wher-
ever sin (wx/c) = 0, where there is no displacement at all. Furthermore, if at
any time ¢ we take a snapshot of the vibrating string, the picture will be a sine wave.
However, the displacement of this sine wave will depend upon the time 7. From
inspection of Eq. (49.3) we can see that the length of one cycle of the sine wave is
equal to the wavelength of either of the superimposed waves:

A = 27c/w. (49.9)

The points where there is no motion satisfy the condition sin (wx/c) = 0, which
means that (wx/c) = 0, 7, 2, ..., nw ... These points are called nodes. Between
any two successive nodes, every point moves up and down sinusoidally, but the
pattern of motion stays fixed in space. This is the fundamental characteristic of
what we call a mode. If one can find a pattern of motion which has the property
that at any point the object moves perfectly sinusoidally, and that all points move
at the same frequency (though some will move more than others), then we have
what is called a mode.

49-2 Confined waves, with natural frequencies

The next interesting problem is to consider what happens if the string is held
at both ends, say at x = Oand x = L. We can begin with the idea of the reflection
of waves, starting with some kind of a bump moving in one direction. As time goes
on, we would expect the bump to get near one end, and as time goes still further it
will become a kind of little wobble, because it is combining with the reversed-
image bump which is coming from the other side. Finally the original bump will
disappear and the image bump will move in the other direction to repeat the process
at the other end. This problem has an easy solution, but an interesting question
is whether we can have a sinusoidal motion ¢the solution just described is periodic,
but of course it is not sinusoidally periodic). Let us try to put a sinusoidally periodic
wave on a string. If the string is tied at one end, we know it must look like our
earlier solution (49.3). If it is tied at the other end, it has to look the same at the
other end. So the only possibility for periodic sinusoidal motion is that the sine
wave must neatly fit into the string length. If it does not fit into the string length,
then it is not a natural frequency at which the string can continue to oscillate. In
short, if the string is started with a sine wave shape that just fits in, then it will
continue to keep that perfect shape of a sine wave and will oscillate harmonically
at some frequency.

Mathematically, we can write sin kx for the shape, where k is equal to the
factor (w/c) in Eqs. (49.3) and (49.4), and this function will be zero at x = 0.
However, it must also be zero at the other end. The significance of this is that &
is no longer arbitrary, as was the case for the half-open string. With the string
closed at both ends, the only possibility is that sin (kL) = 0, because this is the
only condition that will keep both ends fixed. Now in order for a sine to be zero,
the angle must be either 0, 7, 27, or some other integral multiple of 7. The equation

kL = nm (49.5)

will, therefore, give any one of the possible k’s, depending on what integer is put in.
For each of the k’s there is a certain frequency w, which, according to (49.3), is
simply

w = kc = nmwe/L. (49.6)
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So we have found the following: that a string has a property that it can have
sinusoidal motions, but only at certain frequencies. This is the most important
characteristic of confined waves. No matter how complicated the system is, it
always turns out that there are some patterns of motion which have a perfect
sinusoidal time dependence, but with frequencies that are a property of the particu-
lar system and the nature of its boundaries. In the case of the string we have many I~ T %
different possible frequencies, each one, by definition, corresponding to a mode, =~ " =eao----
because a mode is a pattern of motion which repeats itself sinusoidally. Figure

49-2 shows the first three modes for a string. For the first mode the wavelength N

Mis 2L. This can be seen if one continues the wave out to x = 2L to obtain one N "\/ %
complete cycle of the sine wave. The angular frequency w is 27c divided by the NS

wavelength, in general, and in this case, since \ is 2L, the frequency is w¢/L, which

is in agreement with (49.6) with n = 1. Let us call the first mode frequency w;. Y N /\
Now the next mode shows two loops with one node in the middle. For this mode N /'\/\\ 7 X
the wavelength, then, is simply L. The corresponding value of & is twice as great N Nt

and the frequency is twice as large; it is 2w;. For the third mode it is 3w, and so on.
So all the different frequencies of the string are multiples, 1, 2, 3, 4, and so on, of Fig. 49-2. The first three modes of a
the lowest frequency w;. vibrating string.
Returning now to the general motion of the string, it turns out that any possible
motion can always be analyzed by asserting that more than one mode is operating
at the same time. In fact, for general motion an infinite number of modes must
be excited at the same time. To get some idea of this, let us illustrate what happens
when there are two modes oscillating at the same time: Suppose that we have the
first mode oscillating as shown by the sequence of pictures in Fig. 49-3, which

illustrates the deflection of the string for equally spaced time intervals extending =
through half a cycle of the lowest frequency. it =0

Now, at the same time, we suppose that there is an oscillation of the second - . —
mode also. Figure 49-3 also shows a sequence of pictures of this mode, which at S wt=g
the start is 90° out of phase with the first mode. This means that at the start it has
no displacement, but the two halves of the string have oppositely directed velocities. wit=F
Now we recall a general principle relating to linear systems: if there are any two e
solutions, then their sum is also a solution. Therefore a third possible motion of SR —
the string would be a displacement obtained by adding the two solutions shown in
Fig. 49-3. The result, also shown in the figure, begins to suggest the idea of a bump it —
running back and forth between the ends of the string, although with only two

modes we cannot make a very good picture of it; more modes are needed. This FIRST MODE
o . e . . R POSIT|
result is, in fact, a special case of a great principle for linear systems: -~~~ SECOND MODE COMPOSITE WAVE

Any motion at all can be analyzed by assuming that it is the sum of the motions Fig. 49-3. Two modes combine fo
of all the different modes, combined with appropriate amplitudes and phases. give a travelling wave.

The importance of the principle derives from the fact that each mode is very
simple—it is nothing but a sinusoidal motion in time. Itis true that even the general
motion of a string is not really very complicated, but there are other systems, for
example the whipping of an airplane wing, in which the motion is much more
complicated. Nevertheless, even with an airplane wing, we find there is a certain
particular way of twisting which has one frequency and other ways of twisting
that have other frequencies. If these modes can be found, then the complete
motion can always be analyzed as a superposition of harmonic oscillations (except
when the whipping is of such degree that the system can no longer be considered
as linear).

49-3 Modes in two dimensions

The next example to be considered is the interesting situation of modes in two
dimensions. Up to this point we have talked only about one-dimensional situations
—a stretched string or sound waves in a tube. Ultimately we should consider three
dimensions, but an easier step will be that to two dimensions. Consider for definite-
ness a rectangular rubber drumhead which is confined so as to have no displace-
ment anywhere on the rectangular edge, and let the dimensions of the rectangle
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Fig. 49-4. Vibrating rectangular plate.

be a and b, as shown in Fig. 49-4. Now the question is, what are the characteristics
of the possible motion? We can start with the same procedure used for the string.
If we had no confinement at all, we would expect waves travelling along with some
kind of wave motion. For example, (¢**)(e~*=***,¥) would represent a sine wave
travelling in some direction which depends on the relative values of k, and ky.
Now how can we make the x-axis, that is, the line Y = 0,anode? Using the ideas
developed for the one-dimensional string, we can imagine another wave repre-
sented by the complex function (—e™!)(e~*=*~%*¥), The superposition of these
waves will give zero displacement at y = 0 regardless of the values of x and ¢
(Although these functions are defined for negative y where there is no drumhead
to vibrate, this can be ignored, since the displacement is truly zero at y=20)
In this case we can look upon the second function as the reflected wave.
However, we want a nodal line at y = b as wellasat y = 0. How do we do
that? The solution is related to something we did when studying reflection from
crystals. These waves which cancel each other at y = 0 will do the same at y = b
only if 2b sin 4 is an integral multiple of A, where 4 is the angle shown in Fig. 49-4:

m\ = 2bsing, m=0,1,2,... (49.7)

Now in the same way we can make the y-axis a nodal line by adding two more
functions —(e™*)(et™*:=Th¥) and 4 (e®!)(eT*==k,¥) each representing a
reflection of one of the other two waves from the x = 0 line. The condition for a
nodal line at x = a is similar to the one for y = b. It is that 2a cos 8 must also be
an integral multiple of \:

n\x = 2acos 6. (49.8)

Then the final result is that the waves bouncing about in the box produce a standing-
wave pattern, that is, a definite mode.

So we must satisfy the above two conditions if we are to have a mode. Let us
first find the wavelength. This can be obtained by eliminating the angle 6 from
(49.7) and (49.8) to obtain the wavelength in terms of @, b, n and m. The easiest
way to do that is to divide both sides of the respective equations by 25 and 2a,
square them, and add the two equations together. The resultis sin? § + cos2 § =
1 = (n\/2a)® + (mA/2b)2, which can be solved for \:

1 n? m?

B = dg -+ rieh (49.9)
In this way we have determined the wavelength in terms of two integers, and from
the wavelength we immediately get the frequency w, because, as we know, the
frequency is equal to 27c divided by the wavelength.

This result is interesting and important enough that we should deduce it by a
purely mathematical analysis instead of by an argument about the reflections.
Let us represent the vibration by a superposition of four waves chosen so that the
four lines x = 0, x = a,» = 0, and y = b are all nodes. In addition we shall
require that all waves have the same frequency, so that the resulting motion will
represent a mode. From our earlier treatment of light reflection we know that
(e™*)(e~*==Tik¥) represents a wave travelling in the direction indicated in Fig.
49-4. Equation (49.6), that is, k = w/c, still holds, provided

K = k2 + KL (49.10)

It is clear from the figure that k, = k cos 6 and k, = k sin 6.
Now our equation for the displacement, say ¢, of the rectangular drumhead
takes on the grand form

¢ — [eiwt][e(—ikzx-f-ikyy) _ e(-}-ik,x-}-ikyy) _ e(-—ikz:c—ikyy) + e(+ik,z—~ikyy)].
(49.11a)

Although this looks rather a mess, the sum of these things now is not very hard.
49—4



Table 49-1

Mode shape m n (w/wo)? w/wo
+ 1 1 1.25 1.12
|
+ i - 1 2 2.00 1.41
|
|
P R ) 1 3 3.25 1.80
|
——————————— 2 1 4.25 2.06
+
|
————— —t————“—— 2 2 5.00 2.24
+ { -

The exponentials can be combined to give sine functions, so that the displacement
turns out to be

& = [—4 sin kyx sin k,y]le™]. (49.11b)

In other words, it is a sinusoidal oscillation, all right, with a pattern that is also
sinusoidal in both the x- and the y-direction. Our boundary conditions are of
course satisfied at x = 0 and y = 0. We also want ¢ to be zero when x = a and
when y = b. Therefore we have to put in two other conditions: k.a must be an
integral multiple of , and k,b must be another integral multiple of 7. Since we
have seen that k, = kcosd and k, = ksin 6, we immediately get equations
(49.7) and (49.8) and from these the final result (49.9).

Now let us take as an example a rectangle whose width is twice the height.
If we take @ = 2b and use Eqgs. (49.4) and (49.9), we can calculate the frequencies

of all of the modes:
2 42 2
2 _ (mc\ 4m” 4+ n”
w" = (——b> — (49.12)

Table 49-1 lists a few of the simple modes and also shows their shape in a qualitative
way.

The most important point to be emphasized about this particular case is that
the frequencies are not multiples of each other, nor are they multiples of any num-
ber. The idea that the natural frequencies are harmonically related is not generally
true. It is not true for a system of more than one dimension, nor is it true for one-
dimensional systems which are more complicated than a string with uniform
density and tension. A simple example of the latter is a hanging chain in which
the tension is higher at the top than at the bottom. If such a chain is set in harmonic
oscillation, there are various modes and frequencies, but the frequencies are not
simple multiples of any number, nor are the mode shapes sinusoidal.

The modes of more complicated systems are still more elaborate. For example,
inside the mouth we have a cavity above the vocal cords, and by moving the
tongue and the lips, and so forth, we make an open-ended pipe or a closed-ended
pipe of different diameters and shapes; it is a terribly complicated resonator, but

49-5



R IIIDIIIIIIIIVIVIIIIIIIPYIIYIP)

o5 O

Fig. 49-5. Two coupled pendulums.

it is a resonator nevertheless. Now when one talks with the vocal cords, they are
made to produce some kind of tone. The tone is rather complicated and there are
many sounds coming out, but the cavity of the mouth further modifies that tone
because of the various resonant frequencies of the cavity. For instance, a singer
can sing various vowels, a, or o, or 00, and so forth, at the same pitch, but they
sound different because the various harmonics are in resonance in this cavity to
different degrees. The very great importance of the resonant frequencies of a cavity
in modifying the voice sounds can be demonstrated by a simple experiment. Since
the speed of sound goes as the reciprocal of the square root of the density, the
speed of sound may be varied by using different gases. If one uses helium instead
of air, so that the density is lower, the speed of sound is much higher, and all the
frequencies of a cavity will be raised. Consequently if one fills one’s lungs with
helium before speaking, the character of his voice will be drastically altered even
though the vocal cords may still be vibrating at the same frequency.

49-4 Coupled pendulums

Finally we should emphasize that not only do modes exist for complicated
continuous systems, but also for very simple mechanical systems. A good example
is the system of two coupled pendulums discussed in the preceding chapter. In
that chapter it was shown that the motion could be analyzed as a superposition of
two harmonic motions with different frequencies. So even this system can be an-
alyzed in terms of harmonic motions or modes. The string has an infinite number of
modes and the two-dimensional surface also has an infinite number of modes. In
a sense it is a double infinity, if we know how to count infinities. But a simple
mechanical thing which has only two degrees of freedom, and requires only two
variables to describe it, has only two modes.

Let us make a mathematical analysis of these two modes for the case where the
pendulums are of equal length. Let the displacement of one be x, and the displace-
ment of the other be y, as shown in Fig. 49-5. Without a spring, the force on the
first mass is proportional to the displacement of that mass, because of gravity.
There would be, if there were no spring, a certain natural frequency w for this one
alone. The equation of motion without a spring would be

d’x

mos = — mwix. (49.13)

The other pendulum would swing in the same way if there were no spring. In
addition to the force of restoration due to gravitation, there is an additional force
pulling the first mass. That force depends upon the excess distance of x over yand
is proportional to that difference, so it is some constant which depends on the
geometry, times (x — y). The same force in reverse sense acts on the second mass.
The equations of motion that have to be solved are therefore
2 2
m %t; = —mwix — k(x — »), m g;% = —mwiy — k(y — x). (49.14)
In order to find a motion in which both of the masses move at the same fre-
quency, we must determine how much each mass moves. In other words,
pendulum x and pendulum y will oscillate at the same frequency, but their ampli-
tudes must have certain values, 4 and B, whose relation is fixed. Let us try this
solution:

X = Ae™', y = Be™' (49.15)

If these are substituted in Eqs. (49.14) and similar terms are collected, the results are

(wz—wg—£>A = —EB,
m m (49.16)
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The equations as written have had the common factor ™’ removed and have been
divided by m.

Now we see that we have two equations for what looks like two unknowns.
But there really are not two unknowns, because the whole size of the motion is
something that we cannot determine from these equations. The above equations
can determine only the ratio of A to B, but they must both give the same ratio. The
necessity for both of these equations to be consistent is a requirement that the
frequency be something very special.

In this particular case this can be worked out rather easily. If the two equa-
tions are multiplied together, the result is

2 2
<w2 — Wl — %) AB = (%) AB. (49.17)

The term A B can be removed from both sides unless 4 and B are zero, which means
there is no motion at all. If there is motion, then the other terms must be equal,
giving a quadratic equation to solve. The result is that there are two possible
frequencies:

2%
of = wp i =wo+ o (49.18)

Furthermore, if these values of frequency are substituted back into Eq. (49.16),
we find that for the first frequency 4 = B, and for the second frequency 4 = —B.
These are the “mode shapes,” as can be readily verified by experiment.

It is clear that in the first mode, where A = B, the spring is never stretched,
and both masses oscillate at the frequency wy, as though the spring were absent.
In the other solution, where A = — B, the spring contributes a restoring force and
raises the frequency. A more interesting case results if the pendulums have different
lengths. The analysis is very similar to that given above, and is left as an exercise
for the reader.

49-5 Linear systems

Now let us summarize the ideas discussed above, which are all aspects of what
is probably the most general and wonderful principle of mathematical physics. If
we have a linear system whose character is independent of the time, then the motion
does not have to have any particular simplicity, and in fact may be exceedingly
complex, but there are very special motions, usually a series of special motions,
in which the whole pattern of motion varies exponentially with the time. For the
vibrating systems that we are talking about now, the exponential is imaginary, and
instead of saying “exponentially”’ we might prefer to say “sinusoidally’ with time.
However, one can be more general and say that the motions will vary exponentially
with the time in very special modes, with very special shapes. The most general
motion of the system can always be represented as a superposition of motions
involving each of the different exponentials.

This is worth stating again for the case of sinusoidal motion: a linear system
need not be moving in a purely sinusoidal motion, i.e., at a definite single frequency,
but no matter how it does move, this motion can be represented as a superposition
of pure sinusoidal motions. The frequency of each of these motions is a character-
istic of the system, and the pattern or waveform of each motion is also a character-
istic of the system. The general motion in any such system can be characterized
by giving the strength and the phase of each of these modes, and adding them all
together. Another way of saying this is that any linear vibrating system is equivalent
to a set of independent harmonic oscillators, with the natural frequencies corre-
sponding to the modes.

We conclude this chapter by remarking on the connection of modes with
quantum mechanics. In quantum mechanics the vibrating object, or the thing that
varies in space, is the amplitude of a probability function that gives the probability
of finding an electron, or system of electrons, in a given configuration. This ampli-
tude function can vary in space and time, and satisfies, in fact, a linear equation.
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But in quantum mechanics there is a transformation, in that what we call frequency
of the probability amplitude is equal, in the classical idea, to energy. Therefore
we can translate the principle stated above to this case by taking the word Sfrequency
and replacing it with energy. It becomes something like this: a quantum-mechanical
system, for example an atom, need not have a definite energy, just as a simple
mechanical system does not have to have a definite frequency; but no matter how
the system behaves, its behavior can always be represented as a superposition of
states of definite energy. The energy of each state is a characteristic of the atom,
and so is the pattern of amplitude which determines the probability of finding
particles in different places. The general motion can be described by giving the
amplitude of each of these different energy states. This is the origin of energy
levels in quantum mechanics. Since quantum mechanics is represented by waves,
in the circumstance in which the electron does not have enough energy to ulti-
mately escape from the proton, they are confined waves. Like the confined waves
of a string, there are definite frequencies for the solution of the wave equation for
quantum mechanics. The quantum-mechanical interpretation is that these are
definite energies. Therefore a quantum-mechanical system, because it is represented
by waves, can have definite states of fixed energy; examples are the energy levels of
various atoms.
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