47

Sound. The wave equation

47-1 Waves

In this chapter we shall discuss the phenomenon of waves. This is a phenom-
enon which appears in many contexts throughout physics, and therefore our
attention should be concentrated on it not only because of the particular example
considered here, which is sound, but also because of the much wider application
of the ideas in all branches of physics.

It was pointed out when we studied the harmonic oscillator that there are not
only mechanical examples of oscillating systems but electrical ones as well. Waves
are related to oscillating systems, except that wave oscillations appear not only as
time-oscillations at one place, but propagate in space as well.

We have really already studied waves. When we studied light, in learning about
the properties of waves in that subject, we paid particular attention to the interfer-
ence in space of waves from several sources at different locations and all at the
same frequency. There are two important wave phenomena that we have not yet
discussed which occur in light, i.e., electromagnetic waves, as well as in any other
form of waves. The first of these is the phenomenon of interference in time rather
than interference in space. If we have two sources of sound which have slightly
different frequencies and if we listen to both at the same time, then sometimes the
waves come with the crests together and sometimes with the crest and trough to-
gether (see Fig. 47-1). Therising and falling of the sound that results is the phenom-
enon of beats or, in other words, of interference in time. The second phenomenon
involves the wave patterns which result when the waves are confined within a given
volume and reflect back and forth from walls.

These effects could have been discussed, of course, for the case of electro-
magnetic waves. The reason for not having done this is that by using one example
we would not generate the feeling that we are actually learning about many different
subjects at the same time. In order to emphasize the general applicability of waves
beyond electrodynamics, we consider here a different example, in particular
sound waves.

Other examples of waves are water waves consisting of long swells that we
see coming in to the shore, or the smaller water waves consisting of surface tension
ripples. As another example, there are two kinds of elastic waves in solids; a
compressional (or longitudinal) wave in which the particles of the solid oscillate
back and forth along the direction of propagation of the wave (sound waves in a
gas are of this kind), and a transverse wave in which the particles of the solid os-
cillate in a direction perpendicular to the direction of propagation. Earthquake
waves contain elastic waves of both kinds, generated by a motion at some place in
the earth’s crust.

Still another example of waves is found in modern physics. These are waves
which give the probability amplitude of finding a particle at a given place—the
“matter waves” which we have already discussed. Their frequency is proportional
to the energy and their wave number is proportional to the momentum. They are
the waves of quantum mechanics.

In this chapter we shall consider only waves for which the velocity is independ-
ent of the wavelength. This is, for example, the case for light in a vacuum. The
speed of light is then the same for radiowaves, blue light, green light, or for any
other wavelength. Because of this behavior, when we began to describe the wave
phenomenon we did riot notice at first that we had wave propagation. Instead, we
said that if a charge is moved at one place, the electric field at a distance x was
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Fig. 47-1. Interference in time of
two sound sources with slightly different
frequencies, resulting in beats.



Fig. 47-2. The solid curve shows
what the electric fleld might be like at
some instant of time and the dashed curve
shows what the electric fleld is at a time
t later.

proportional to the acceleration, not at the time ¢, but at the earlier time ¢t — x/c.
Therefore if we were to picture the electric field in space at some instant of time,
as in Fig. 47-2, the electric field at a time ¢ later would have moved the distance
ct, as indicated in the figure. Mathematically, we can say that in the one-dimen-
sional example we are taking, the electric field is a function of x — ct. We see
that at ¢+ = 0, it is some function of x. If we consider a later time, we need only to
increase x somewhat to get the same value of the electric field. For example, if the
maximum field occurred at x = 3 at time zero, then to find the new position of
the maximum field at time 7 we need

XxX—ct=3 or x=3+ct.

We see that this kind of function represents the propagation of a wave.

Such a function, f(x — cf), then represents a wave. We may summarize this
description of a wave by saying simply that

Six — ct) = f(x + Ax — c(t + AD),

when Ax = c Az. There is, of course, another possibility, i.e., that instead of a
source to the left as indicated in Fig. 47-2, we have a source on the right, so that
the wave propagates toward negative x. Then the wave would be described by
g(x + cn).

There is the additional possibility that more than one wave exists in space at
the same time, and so the electric field is the sum of the two fields, each one propa-
gating independently. This behavior of electric fields may be described by saying
that if f1(x — cf) is a wave, and if fo(x — ct) is another wave, then their sum is
also a wave. This is called the principle of superposition. The same principle is
valid in sound.

We are familiar with the fact that if a sound is produced, we hear with complete
fidelity the same sequence of sounds as was generated. If we had high frequencies
travelling faster than low frequencies, a short, sharp noise would be heard as a
succession of musical sounds. Similarly, if red light travelled faster than blue
light, a flash of white light would be seen first as red, then as white, and finally as
blue. We are familiar with the fact that this is not the case. Both sound and
light travel with a speed in air which is very nearly independent of frequency.
Examples of wave propagation for which this independence is not true will be
considered in Chapter 48.

In the case of light (electromagnetic waves) we gave a rule which determined
the electric field at a point as a result of the acceleration of a charge. One might
expect now that what we should do is give a rule whereby some quality of the air,
say the pressure, is determined at a given distance from a source in terms of the
source motion, delayed by the travel time of the sound. In the case of light this
procedure was acceptable because all that we knew was that a charge at one place
exerts a force on another charge at another place. The details of propagation from
the one place to the other were not absolutely essential. In the case of sound,
however, we know that it propagates through the air between the source and the
hearer, and it is certainly a natural question to ask what, at any given moment,
the pressure of the air is. We would like, in addition, to know exactly how the air
moves. In the case of electricity we could accept a rule, since we could say that
we do not yet know the laws of electricity, but we cannot make the same remark
with regard to sound. We would not be satisfied with a rule stating how the sound
pressure moves through the air, because the process ought to be understandable as
a consequence of the laws of mechanics. In short, sound is a branch of mechanics,
and so it is to be understood in terms of Newton’s laws. The propagation of
sound from one place to another is merely a consequence of mechanics and the
properties of gases, if it propagates in a gas, or of the properties of liquids or solids,
if it propagates through such mediums. Later we shall derive the properties
of light and its wave propagation in a similar way from the laws of electrody-
namics.
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47-2 The propagation of sound

We shall give a derivation of the properties of the propagation of sound
between the source and the receiver as a consequence of Newton’s laws, and we shall
not consider the interaction with the source and the receiver. Ordinarily we em-
phasize a result rather than a particular derivation of it. In this chapter we take
the opposite view. The point here, in a certain sense, is the derivation itself. This
problem of explaining new phenomena in terms of old ones, when we know the
laws of the old ones, is perhaps the greatest art of mathematical physics. The
mathematical physicist has two problems: one is to find solutions, given the equa-
tions, and the other is to find the equations which describe a new phenomenon.
The derivation here is an example of the second kind of problem.

We shall take the simplest example here—the propagation of sound in one
dimension. To carry out such a derivation it is necessary first to have some kind
of understanding of what is going on. Fundamentally what is involved is that if
an object is moved at one place in the air, we observe that there is a disturbance
which travels through the air. If we ask what kind of disturbance, we would say
that we would expect that the motion of the object produces a change of pressure.
Of course, if the object is moved gently. the air merely flows around it, but what we
are concerned with is a rapid motion. so that there is not sufficient time for such
a flow. Then, with the motion. the air is compressed and a change of pressure is
produced which pushes on additional air. This air is in turn compressed, which
leads again to an extra pressure, and a wave is propagated.

We now want to formulate such a process. We have to decide what variables
we need. In our particular problem we would need to know how much the air
has moved, so that the air displacement in the sound wave is certainly one relevant
variable. In addition we would like to describe how the air density changes as it is
displaced. The air pressure also changes, so this is another variable of interest.
Then, of course, the air has a velocity, so that we shall have to describe the velocity
of the air particles. The air particles also have accelerations—but as we list these
many variables we soon realize that the velocity and acceleration would be known
if we knew how the air displacement varies with time.

As we said, we shall consider the wave in one dimension. We can do this if
we are sufficiently far from the source that what we call the wavefronts are very
nearly planes. We thus make our argument simpler by taking the least complicated
example. We shall then be able to say that the displacement, X, depends only on
x and ¢, and not on y and z. Therefore the description of the air is given by x(x, 7).

Is this description complete? It would appear to be far from complete, for
we know none of the details of how the air molecules are moving. They are moving
in all directions, and this state of affairs is certainly not described by means of this
function X(x, 7). From the point of view of kinetic theory, if we have a higher
density of molecules at one place and a lower density adjacent to that place, the
molecules would move away from the region of higher density to the one of lower
density, so as to equalize this difference. Apparently we would not get an oscillation
and there would be no sound. What is necessary to get the sound wave is this
situation: as the molecules rush out of the region of higher density and higher
pressure, they give momentum to the molecules in the adjacent region of lower
density. For sound to be generated, the regions over which the density and pressure
change must be much larger than the distance the molecules travel before colliding
with other molecules. This distance is the mean free path, and the distance between
pressure crests and troughs must be much larger than this. Otherwise the molecules
would move freely from the crest to the trough and immediately smear out the wave.

It is clear that we are going to describe the gas behavior on a scale large
compared with the mean free path, and so the properties of the gas will not be
described in terms of the individual molecules. The displacement, for example,
will be the displacement of the center of mass of a small element of the gas, and
the pressure or density will be the pressure or density in this region. We shall
call the pressure P and the density p, and they will be functions of x and t. We
must keep in mind that this description is an approximation which is valid only

when these gas properties do not vary too rapidly with distance.
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Fig. 47-3. The displacement of the
air at x is X{x, 1), and at x + Ax it is
X(x 4+ Ax, #). The original volume of the
air for a unit area of the plane wave is
Ax; the new volume is Ax + X{x +
Ax, 1) — Xlx, t).

47-3 The wave equation

The physics of the phenomenon of sound waves thus involves three features:
I. The gas moves and changes the density.
I1. The change in density corresponds to a change in pressure.
I11. Pressure inequalities generate gas motion.

Let us consider II first. For a gas, a liquid, or a solid, the pressure is some function
of the density. Before the sound wave arrives, we have equilibrium, with a pressure
P, and a corresponding density po. A pressure P in the medium is connected to
the density by some characteristic relation P = f{p) and, in particular, the equilib-
rium pressure P is given by Py = f(po). The changes of pressure in sound from
the equilibrium value are extremely small. A convenient unit for measuring pressure
is the bar, where 1 bar = 10° n/m?. The pressure of 1 standard atmosphere is very
nearly 1 bar: 1 atm = 1.0133 bars. In sound we use a logarithmic scale of in-
tensities since the sensitivity of the ear is roughly logarithmic. This scale is the
decibel scale, in which the acoustic pressure level for the pressure amplitude P
is defined as

I (acoustic pressure level) = 20 log;o(P/Pyes) in db, 47.1)

where the reference pressure P = 2 X 107!0 bar. A pressure amplitude of
P = 103P.; = 2 X 1077 bar* corresponds to a moderately intense sound of
60 decibels. We see that the pressure changes in sound are extremely small com-
pared with the equilibrium, or mean, pressure of 1 atm. The displacements and
the density changes are correspondingly extremely small. In explosions we do not
have such small changes; the excess pressures produced can be greater than
1 atm. These large pressure changes lead to new effects which we shall consider
later. In sound we do not often consider acoustic intensity levels over 100 db;
120 db is a level which is painful to the ear. Therefore, for sound, if we write

P=Py+ P, p=po+t pe 47.2)

we shall always have the pressure change P, very small compared with P, and the
density change p. very small compared with po. Then

Py + P, = flpo + po) = fleo) + pef'(po); (47.3)

where Py = f(po) and f"(p,) stands for the derivative of f(p) evaluated at p = p,.
We can take the second step in this equality only because p, is very small. We find in
this way that the excess pressure P, is proportional to the excess density p,, and we
may call the proportionality factor «:

P, = kp,, where k = f'(po) = (dP/dp)o. an 47.9)

The relation we needed for II is this very simple one.

Let us now consider I. We shall suppose that the position of a portion of air
undisturbed by the sound wave is x and the displacement at the time 7 due to the
sound is X(x, ?), so that its new position is x 4+ x(x, 7), as in Fig. 47-3. Now the
undisturbed position of a nearby portion of air is x 4+ Ax, and its new position
isx + Ax + x(x + Ax, 7). We can now find the density changes in the following
way. Since we are limiting ourselves to plane waves, we can take a unit area
perpendicular to the x-direction, which is the direction of propagation of the sound
wave. The amount of air, per unit area, in Ax is then po Ax, where pg is the un-
disturbed, or equilibrium, air density. This air, when displaced by the sound wave,
now lies between x + X(x, 7) and x + Ax + X(x + Ax, f), so that we have the
same matter in this interval that was in Ax when undisturbed. If p is the new
density, then

polAx = p[x + Ax + X(x + Ax, 1) — x — X(x, 1)) (47.5)

* With this choice of P, the Pis not the peak pressure in the sound wave but the “root-
mean-square” pressure, which is 1/(2)1/2 times the peak pressure.
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Since Ax is small, we can write x(x + Ax, 1) — X(x,t) = (0x/dx) Ax. This
derivative is a partial derivative, since x depends on the time as well as on x.
Our equation then is

poAx = p (g—: Ax + Ax) (47.6)
or
ax
Po = (po + pe) 5= + po + pe. 47.7)

Now in sound waves all changes are small so that pe is small, x is small, and ax/dx
is also small. Therefore in the relation that we have just found,

X X
Pe = —Po ox — Pe a ’ (47'8)

we can neglect p, 9x/dx compared with po 9x/dx. Thus we get the relation we
needed for I:

X
Pe = —poa-- (I (47.9)

This equation is what we would expect physically. If the displacements vary with
x, then there will be density changes. The sign is also right: if the displacement x
increases with x, so that the air is stretched out, the density must go down.

We now need the third equation, which is the equation of the motion pro-
duced by the pressure. If we know the relation between the force and the pressure,
we can then get the equation of motion. If we take a thin slab of air of length Ax
and of unit area perpendicular to x, then the mass of air in this slab is po Ax and
it has the acceleration 32x/9¢2, so the mass times the acceleration for this slab of
matter is po Ax (8%x/3¢2). (It makes no difference for small Ax whether the accelera-
tion 8°x/a1 is evaluated at an edge of the slab or at some intermediate position.)
If now we find the force on this matter for a unit area perpendicular to x, it will
then be equal to po Ax (82x/81%). We have the force in the + x-direction, at x, of
amount P(x, £) per unit area, and we have the force in the opposite direction, at
x + Ax, of amount P(x + Ax, ?) per unit area (Fig. 47-4):

PG, 1) — P(x + Ax, ) = — ‘Z—I; Ax = — a—;;f Ax, (47.10)

since Ax is small and since the only part of P which changes is the excess pressure
P,. We now have III:

a%x aP,

and so we have enough equations to interconnect things and reduce down to one
variable, say to X. We can eliminate P, from III by using II, so that we get

% ap.
P0G = —x 9P, 47.12)

and then we can use I to eliminate p,. In this way we find that p, cancels out and
that we are left with
2 2
Ix _ X, (47.13)

We shall call ¢2 = &, so that we can write

?*x 1 o%x
e = é FTh (47.14)
This is the wave equation which describes the behavior of sound in matter.
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47-4 Solutions of the wave equation

We now can see whether this equation really does describe the essential
properties of sound waves in matter. We want to deduce that a sound pulse, or
disturbance, will move with a constant speed. We want to verify that two different
pulses can move through each other—the principle of superposition. We also
want to verify that sound can go either to the right or to the left. All these properties
should be contained in this one equation.

We have remarked that any plane-wave disturbance which moves with a
constant velocity v has the form f(x — vz). Now we have to see whether x(x, 1) =
JS(x — v?)is a solution of the wave equation. When we calculate dx/dx, we get the
derivative of the function, dx/dx = f’(x — vi). Differentiating once more, we find

2
27’; = fx — o). (47.15)

The differentiation of this same function with respect to r gives — v times the
derivative of the function, or dx/8t = —uyf'(x — vt), and the second time de-
rivative is

?x _ v f"(x — of) (47.16)
ar2 ’ ’
It is evident that f(x — vr) will satisfy the wave equation provided the wave velocity
v is equal to c,.

We find, therefore, from the laws of mechanics that any sound disturbance

propagates with the velocity c¢,, and in addition we find that

¢, = kY2 = (dP/dp)'?,

and so we have related the wave velocity to a property of the medium.

If we consider a wave travelling in the opposite direction, so that x(x, 1) =
g(x + vp), it is easy to see that such a disturbance also satisfies the wave equation.
The only difference between such a wave and one travelling from left to right is
in the sign of », but whether we have x + vz or x — vt as the variable in the
function does not affect the sign of 92x/8¢2, since it involves only v2. It follows
that we have a sBlution for waves propagating in either direction with speed ¢,.

An extremely interesting question is that of superposition. Suppose one solu-
tion of the wave equation has been found, say x;. This means that the second de-
rivative of x; with respect to x is equal to 1/¢? times the second derivative of x;
with respect to 1. Now any other solution X, has this same property. If we super-
pose these two solutions, we have

X(x, 1) = Xa(x, 1) + Xa(x, 1), (47.17)

and we wish to verify that x(x, 7) is also a wave, i.e., that X satisfies the wave equa-

tion. We can easily prove this result, since we have
%x ' " 8°x 5
dx2 dx2 ax2

(47.18)

and, in addition,

ax % | 8%,

ETZIFT? arz (47.19)
It follows that d2x/dx2 = (1/c?) 32x/at?, so we have verified the principle of
superposition. The proof of the principle of superposition follows from the fact
that the wave equation is /inear in X.

We can now expect that a plane light wave propagating in the x-direction,

polarized so that the electric field is in the y-direction, will satisfy the wave equation

9’E, _ 1 0%E,
axz  c2 arz

(47.20)
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where c is the speed of light. This wave equation is one of the consequences of
Maxwell’s equations. The equations of electrodynamics will lead to the wave
equation for light just as the equations of mechanics lead to the wave equation
for sound.

47-5 The speed of sound

Our deduction of the wave equation for sound has given us a formula which
connects the wave speed with the rate of change of pressure with the density at the

normal pressure:
2 dP)
s =\ - 47.21
¢ <dP 0 ( )

In evaluating this rate of change, it is essential to know how the temperature varies.
In a sound wave, we would expect that in the region of compression the temperature
would be raised, and that in the region of rarefaction the temperature would be
lowered. Newton was the first to calculate the rate of change of pressure with
density, and he supposed that the temperature remained unchanged. He argued
that the heat was conducted from one region to the other so rapidly that the
temperature could not rise or fall. This argument gives the isothermal speed of
sound, and it is wrong. The correct deduction was given later by Laplace, who put
forward the opposite idea—that the pressure and temperature change adiabatically
in a sound wave. The heat flow from the compressed region to the rarefied region is
negligible so long as the wavelength is long compared with the mean free path.
Under this condition the slight amount of heat flow in a sound wave does not
affect the speed, although it gives a small absorption of the sound energy. We can
expect correctly that this absorption increases as the wavelength approaches the
mean free path, but these wavelengths are smaller by factors of about a million
than the wavelengths of audible sound.

The actual variation of pressure with density in a sound wave is the one that
allows no heat flow. This corresponds to the adiabatic variation, which we found
to be PV = const, where ¥ was the volume. Since the density p varies inversely
with V, the adiabatic connection between P and p is

P = const p”, (47.22)

from which we get dP/dp = YP/p. We then have for the speed of sound the
relation
¢ = lpl-’ : (47.23)

We can also write cZ = YPV/pV and make use of the relation PV = NkT.
Further, we see that pV is the mass of gas, which can also be expressed as Nm,
or as u, where m is the mass of a molecule aud u is the molecular weight. In this
way we find that

2 _ YT _ YRT

f=— ” (47.24)

from which it is evident that the speed of sound depends only on the gas temperature
and not on the pressure or the density. We also have observed that
kT = Im(v?), (47.25)

where (v?) is the mean square of the speed of the molecules. It follows that

e = (v/3)(v?), or
Y\1/2
Ce = (3) Vav. (47.26)

This equation states that the speed of sound is some number which is roughly
1/(3)"'? times some average speed, v,,, of the molecules (the square root of the
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mean square velocity). In other words, the speed of sound is of the same order of
magnitude as the speed of the molecules, and is actually somewhat less than this
average speed.

Of course we could expect such a result, because a disturbance like a change
in pressure is, after all, propagated by the motion of the molecules. However,
such an argument does not tell us the precise propagation speed; it could have
turned out that sound was carried primarily by the fastest molecules, or by the
slowest molecules. It is reasonable and satisfying that the speed of sound is roughly
% of the average molecular speed v,,.
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