44

The Laws of Thermodynamics

44-1 Heat engines; the first law

So far we have been discussing the properties of matter from the atomic point
of view, trying to understand roughly what will happen if we suppose that things
are made of atoms obeying certain laws. However, there are a number of relation-
ships among the properties of substances which can be worked out without con-
sideration of the detailed structure of the materials. The determination of the
relationships among the various properties of materials, without knowing their
internal structure, is the subject of thermodynamics. Historically, thermodynamics
was developed before an understanding of the internal structure of matter was
achieved.

To give an example: we know from the kinetic theory that the pressure of a gas
is caused by molecular bombardment, and we know that if we heat a gas, so that
the bombardment increases, the pressure must increase. Conversely, if the piston
in a container of the gas is moved inward against the force of bombardment, the
energy of the molecules bombarding the piston will increase, and consequently
the temperature will increase. So, on the one hand, if we increase the temperature
at a given volume, we increase the pressure. On the other hand, if we compress
the gas, we will find that the temperature will rise. From the kinetic theory, one
can derive a quantitative relationship between these two effects, but instinctively
one might guess that they are related in some necessary fashion which is independ-
ent of the details of the collisions.

Let us consider another example. Many people are familiar with this interest-
ing property of rubber: If we take a rubber band and pull it, it gets warm. If one
puts it between his lips, for example, and pulls it out, he can feel a distinct
warming, and this warming is reversible in the sense that if he relaxes the rubber
band quickly while it is between his lips, it is distinctly cooled. That means that
when we stretch a rubber band it heats, and when we release the tension of the band
it cools. Now our instincts might suggest that if we heated a band, it might pull:
that the fact that pulling a band heats it might imply that heating a band should
cause it to contract. And, in fact, if we apply a gas flame to a rubber band holding
a weight, we will see that the band contracts abruptly (Fig. 44-1). So it is true that
when we heat a rubber band it pulls, and this fact is definitely related to the fact
that when we release the tension of it, it cools.

The internal machinery of rubber that causes these effects is quite complicated.
We will describe it from a molecular point of view to some extent, although our
main purpose in this chapter is to understand the relationship of these effects
independently of the molecular model. Nevertheless, we can show from the molec-
ular model that the effects are closely related. One way to understand the behavior
of rubber is to recognize that this substance consists of an enormous tangle of
long chains of molecules, a kind of “molecular spaghetti,” with one extra compli-
cation: between the chains there are cross-links—like spaghetti that is sometimes
welded together where it crosses another piece of spaghetti—a grand tangle.
When we pull out such a tangle, some of the chains tend to line up along the direc-
tion of the pull. At the same time, the chains are in thermal motion, so they hit
each other continually. It follows that such a chain, if stretched, would not by
itself remain stretched, because it would be hit from the sides by the other chains
and other molecules, and would tend to kink up again. So the real reason why a
rubber band tends to contract is this: when one pulls it out, the chains are length-
wise, and the thermal agitations of the molecules on the sides of the chains tend
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to kink the chains up, and make them shorten. One can then appreciate that if the
chains are held stretched and the temperature is increased, so that the vigor of the
bombardment on the sides of the chains is also increased, the chains tend to pull
in, and they are able to pull a stronger weight when heated. If, after being stretched
for a time, a rubber band is allowed to relax, each chain becomes soft, and the
molecules striking it lose energy as they pound into the relaxing chain. So the
temperature falls.

We have seen how these two process, contraction when heated and cooling
during relaxation, can be related by the kinetic theory, but it would be a tremendous
challenge ta determine from the theory the precise relationship between the two.
We would have to know how many collisions there were each second and what the
chains look like, and we would have to take account of all kinds of other complica-
tions. The detailed mechanism is so complex that we cannot, by kinetic theory,
really determine exactly what happens; still, a definite relation between the two
effects we observe can be worked out without knowing anything about the internal
machinery!

The whole subject of thermodynamics depends essentially upon the following
kind of consideration: because a rubber band is “stronger” at higher temperatures
than it is at lower temperatures, it ought to be possible to lift weights, and to
move them around, and thus to do work with heat. In fact, we have already seen
experimentally that a heated rubber band can lift a weight. The study of the way
that one does work with heat is the beginning of the science of thermodynamics.
Can we make an engine which uses the heating effect on a rubber band to do work?
One can make a silly looking engine that does just this. It consists of a bicycle
wheel in which all the spokes are rubber bands (Fig. 44-2). If one heats the rubber
bands on one side of the wheel with a pair of heat lamps, they become “stronger”
than the rubber bands on the other side. The center of gravity of the wheel will
be pujled to one side, away from the bearing, so that the wheel turns. As it turns,
cool rubber bands move toward the heat, and the heated bands move away from
the heat and cool, so that the wheel turns slowly so long as the heat is applied.
The efficiency of this engine is extremely low. Four hundred watts of power pour
into the two lamps, but it is just possible to lift a fly with such an engine! An inter-
esting question, however, is whether we can get heat to do the work in more
efficient ways.

In fact, the science of thermodynamics began with an analysis, by the great
engineer Sadi Carnot, of the problem of how to build the best and most efficient
engine, and this constitutes one of the few famous cases in which engineering has
contributed fundamentally to physical theory. Another example that comes
to mind is the more recent analysis of information theory by Claude Shannon.
These two analyses, incidentally, turn out to be closely related.

Now the way a steam engine ordinarily operates is that heat from a fire boils
some water, and the steam so formed expands and pushes on a piston which makes
a wheel go around. So the steam pushes the piston—what then? One has to finish
the job: g stupid way to complete the cycle would be to let the steam escape into
the air, for then one has to keep supplying water. It is cheaper—more efficient—
to let the steam go into another box, where it is condensed by cool water, and then
pump the water back into the boiler, so that it circulates continuously. Heat is
thus supplied to the engine and converted into work. Now would it be better to
use alcohol? What property should a substance have so that it makes the best
possible engine? That was the question to which Carnot addressed himself, and
one of the by-products was the discovery of the type of relationship that we have
just explained above.

The results of thermodynamics are all contained implicitly in certain appar-
ently simple statements called the laws of thermodynamics. At the time when Carnot
lived, the first law of thermodynamics, the conservation of energy, was not known.
Carnot’s arguments were so carefully drawn, however, that they are valid even
though the first law was not known in his time! Some time afterwards, Clausius
made a simpler derivation that could be understood more easily than Carnot’s
very subtle reasoning. But it turned out that Clausius assumed, not the conserva-
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tion of energy in general, but that keat was conserved according to the caloric
theory, which was later shown to be false. So it has often been said that Carnot’s
logic was wrong. But his logic was quite correct. Only Clausius’ simplified ver-
sion, that everybody read, was incorrect.

The so-called second law of thermodynamics was thus discovered by Carnot
before the first law! It would be interesting to give Carnot’s argument that did not
use the first law, but we shall not do so because we want to learn physics, not
history. We shall use the first law from the start, in spite of the fact that a great
deal can be done without it.

Let us begin by stating the first law, the conservation of energy: if one has a
system and puts heat into it, and does work on it, then its energy is increased by
the heat put in and the work done. We can write this as follows: The heat Q put
into the system, plus the work W done on the system, is the increase in the energy
U of the system; the latter energy is sometimes called the internal energy:

Changein U = Q + W. (44.1)

The change in U can be represented as adding a little heat AQ and adding a little
work AW:
AU = AQ + AW, (44.2)

which is a differential form of the same law. We know that very well, from an
earlier chapter.

44-2 The second law

Now, what about the second law of thermodynamics? We know that if we
do work against friction, say, the work lost to us is equal to the heat produced.
If we do work in a room at temperature T, and we do the work slowly enough, the
room temperature does not change much, and we have converted work into heat
at a given temperature. What about the reverse possibility ? Is it possible to convert
the heat back into work at a given temperature? The second law of thermo-
dynamics asserts that it is not. It would be very convenient to be able to convert
heat into work merely by reversing a process like friction. 1If we consider only the
conservation of energy, we might think that heat energy, such as that in the vibra-
tional motions of molecules, might provide a goodly supply of useful energy.
But Carnot assumed that it is impossible to extract the energy of heat at a single
temperature. In other words, if the whole world were at the same temperature,
one could not convert any of its heat energy into work: while the process of making
work go into heat can take place at a given temperature, one cannot reverse it to
get the work back again. Specifically, Carnot assumed that heat cannot be taken
in at a certain temperature and converted into work with no other change in the
system or the surroundings.

That last phrase is very important. Suppose we have a can of compressed
air at a certain temperature, and we let the air expand. It can do work; it can make
hammers go, for example. It cools off a little in the expansion, but if we had a big
sea, like the ocean, at a given temperature—a heat reservoir—we could warm it up
again. So we have taken the heat out of the sea, and we have done work with the
compressed air. But Carnot was not wrong, because we did not leave everything as
it was. If we recompress the air that we let expand, we will find we are doing
extra work, and when we are finished we will discover that we not only got no
work out of the system at temperature 7, but we actually put some in. We must
talk only about situations in which the net result of the whole process is to take heat
away and convert it into work, just as the net result of the process of doing work
against friction is to take work and convert it into heat. If we move in a circle, we
can bring the system back precisely to its starting point, with the net result that
we did work against friction and produced heat. Can we reverse the process?
Turn a switch, so that everything goes backwards, so the friction does work against
us, and cools the sea? According to Carnot: no! So let us suppose that this is
impossible.
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Reversible heat transfer.

If it were possible it would mean, among other things, that we could take
heat out of a cold body and put it into a hot body at no cost, as it were. Now we
know it is natural that a hot thing can warm up a cool thing; if we simply put a
hot body and a cold one together, and change nothing else, our experience assures
us that it is not going to happen that the hot one gets hotter, and the cold one gets
colder! But if we could obtain work by extracting the heat out of the ocean, say,
or from anything else at a single temperature, then that work could be converted
back into heat by friction at some other temperature. For instance, the other arm
of a working machine could be rubbing something that is already hot. The net
result would be to take heat from a “cold” body, the ocean, and to put it into a
hot body. Now, the hypothesis of Carnot, the second law of thermodynamics, is
sometimes stated as follows: heat cannot, of itself, flow from a cold to a hot object.
But, as we have just seen, these two statements are equivalent: first, that one can-
not devise a process whose only result is to convert heat to work at a single temper-
ature, and second, that one cannot make heat flow by itself from a cold to a hot
place. We shall mostly use the first form.

Carnot’s analysis of heat engines is quite similar to the argument that we
gave about weight-lifting engines in our discussion of the conservation of energy
in Chapter 4. In fact, that argument was patterned after Carnot’s argument about
heat engines, and so the present treatment will sound very much the same.

Suppose we build a heat engine that has a “boiler” somewhere at a tempera-
ture T;. A certain heat Q, is taken from the boiler, the steam engine does some
work W, and it then delivers some heat Q, into a ‘“‘condenser’ at another tempera-
ture T’y (Fig. 44-3). Carnot did not say how much heat, because he did not know
the first law, and he did not use the law that Q, was equal to Q because he did
not believe it. Although everybody thought that, according to the caloric theory,
the heats @, and @, would have to be the same, Carnot did not say they were the
same—that is part of the cleverness of his argument. If we do use the first law, we
find that the heat delivered, Q.,, is the heat Q; that was put in minus the work W
that was done:

Q2= 01— W (44.3)

(If we have some kind of cyclic process where water is pumped back into the
boiler after it is condensed, we will say that we have heat Q, absorbed and work
W done, during each cycle, for a certain amount of water that goes around the
cycle.)

Now we shall build another engine, and see if we cannot get more work from
the same amount of heat being delivered at the temperature T';, with the condenser
still at the temperature T. We shall use the same amount of heat Q, from the
boiler, and we shall try to get more work than we did out of the steam engine,
perhaps by using another fluid, such as alcohol.

44-3 Reversible engines

Now we must analyze our engines. One thing is clear: we will lose something
if the engines contain devices in which there is friction. The best engine will be a
frictionless engine. We assume, then, the same idealization that we did when we
studied the conservation of energy; that is, a perfectly frictionless engine.

We must also consider the analog of frictionless motion, “frictionless” heat
transfer. If we put a hot object at a high temperature against a cold object, so that
the heat flows, then it is not possible to make that heat flow in a reverse direction
by a very small change in the temperature of either object. But when we have a
practically frictionless machine, if we push it with a little force one way, it goes
that way, and if we push it with a little force the other way, it goes the other way.
We need to find the analog of frictionless motion: heat transfer whose direction we
can reverse with only a tiny change. If the difference in temperature is finite, that is
impossible, but if one makes sure that heat flows always between two things at
essentially the same temperature, with just an infinitesimal difference to make it
flow in the desired direction, the flow is said to be reversible (Fig. 44-4). If we heat
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the object on the left a little, heat will flow to the right; if we cool it a little, heat
will flow to the left. So we find that the ideal engine is a so-called reversible engine,
in which every process is reversible in the sense that, by minor changes, infinitesimal
changes, we can make the engine go in the opposite direction. That means that
nowhere in the machine must there be any appreciable friction, and nowhere in
the machine must there be any place where the heat of the reservoirs, or the flame
of the boiler, is in direct contact with something definitely cooler or warmer.

Let us now consider an idealized engine in which all the processes are reversible.
To show that such a thing is possible in principle, we will give an example of an
engine cycle which may or may not be practical, but which is at least reversible,
in the sense of Carnot’s idea. Suppose that we have a gas in a cylinder equipped
with a frictionless piston. The gas is not necessarily a perfect gas. The fluid does not
even have to be a gas, but to be specific let us say we do have a perfect gas. Also,
suppose that we have two heat pads, Ty and T,—great big things that have definite
temperatures, 7'y and Tp. We will suppose in this case that T’y is higher than T',.
Let us first heat the gas and at the same time expand it, while it is in contact with
the heat pad at 7';. As we do this, pulling the piston out very slowly as the heat
flows into the gas, we will make sure that the temperature of the gas never gets
very far from T';. 1f we pull the piston out too fast, the temperature of the gas will
fall too much below T'; and then the process will not be quite reversible, but if
we pull it out slowly enough, the temperature of the gas will never depart much
from T;. On the other hand, if we push the piston back slowly, the temperature
would be only infinitesimally higher than T';, and the heat would pour back. We
see that such an isothermal (constant-temperature) expansion, done slowly and
gently enough, is a reversible process.

To understand what we are doing, we shall use a plot (Fig. 44-6) of the pressure
of the gas against its volume. As the gas expands, the pressure falls. The curve
marked (1) tells us how the pressure and volume change if the temperature is
kept fixed at the value T';. For an ideal gas this curve would be PV = NkT.
During an isothermal expansion the pressure falls as the volume increases until
we stop at the point 5. At the same time, a certain heat Q; must flow into the gas
from the reservoir, for if the gas were expanded without being in contact with the
reservoir it would cool off, as we already know. Having completed the isothermal
expansion, stopping at the point b, let us take the cylinder away from the reservoir
and continue the expansion. This time we permit no heat to enter the cylinder.
Again we perform the expansion slowly, so there is no reason why we cannot
reverse it, and we again assume there is no friction. The gas continues to expand
and the temperature falls, since there is no longer any heat entering the cylinder.

We let the gas expand, following the curve marked (2), until the temperature
falls to T's, at the point marked ¢. This kind of expansion, made without adding
heat, is called an adiabatic expansion. For an ideal gas, we already know that
curve (2) has the form PV” = constant, where 7 is a constant greater than 1, so
that the adiabatic curve has a more negative slope than the isothermal curve. The
gas cylinder has now reached the temperature T',, so that if we put it on the heat
pad at temperature T’y there will be no irreversible changes. Now we slowly com-
press the gas while it is in contact with the reservoir at T'y, following the curve
marked (3) (Fig. 44-5, Step 2). Because the cylinder is in contact with the reservoir,
the temperature does not rise, but heat Q5 flows from the cylinder into the reservoir
at the temperature T;. Having compressed the gas isothermally along curve (3)
to the point d, we remove the cylinder from the heat pad at temperature T's and
compress it still further, without letting any heat flow out. The temperature will
rise, and the pressure will follow the curve marked (4). If we carry out each step
properly, we can return to the point a at temperature 7'y where we started, and
repeat the cycle.

We see that on this diagram we have carried the gas around a complete cycle,
and during one cycle we have put Q, in at temperature 7'}, and have removed Q,
at temperature T;. Now the point is that this cycle is reversible, so that we could
represent all the steps the other way around. We could have gone backwards
instead of forwards: we could have started at point a, at temperature T';, expanded
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along the curve (4), expanded further ut the temperature T',, absorbing heat Q»,
and so on, going around the cycle backward. If we go around the cycle in one direc-
tion, we must do work on the gas; if we go in the other direction, the gas does work
on us.

Incidentally, it is easy to find out what the total amount of work is, because
the work during any expansion is the pressure times the change in volume, f Pdv.
On this particular diagram, we have plotted P vertically and ¥ horizontally. So
if we call the vertical distance y and the horizontal distance x, this is fy dx—in
other words, the area under the curve. So the area under each of the numbered
curves is a measure of the work done by or on the gas in the corresponding step.
It is easy to see that the net work done is the shaded area of the picture.

Now that we have given a single example of a reversible machine, we shall
suppose that other such engines are also possible. Let us assume that we have a
reversible engine 4 which takes Q at T'y, does work W, and delivers some heat at
T,. Now let us assume we have any other engine B, made by man, already designed
or not yet invented, made of rubber bands, steam, or whatever, reversible or not,
which is designed so that it takes in the same amount of heat Q; at Ty, and rejects
the heat at the lower temperature Ty (Fig. 44-7). Assume that engine B does
some work, #’. Now we shall show that W’ is not greater than W—that no engine
can do more work than a reversible one. Why? Suppose that, indeed, W’ were
bigger than W. Then we could take the heat Q out of the reservoir at Ty, and
with engine B we could do work W’ and deliver some heat to the reservoir at T'g;
we do not care how much. That done, we could save some of the work W’, which is
supposed to be greater than W; we could use a part of it, W, and save the remainder,
W' — W, for useful work. With the work W we could run engine A backwards
because it is a reversible engine. It will absorb some heat from the reservoir at
T, and deliver Q, back to the reservoir at T'y. After this double cycle, the net
result would be that we would have put everything back the way it was before, and
we would have done some excess work, namely W’ — W, and all we would have
done would be to extract energy from the reservoir at T'o! We were careful to re-
store the heat Q to the reservoir at ;. So that reservoir can be small and “inside”
our combined machine A 4+ B, whose net effect is therefore to extract a net heat
W' — W from the reservoir at T and convert it into work. But to obtain useful
work from a reservoir at a single temperature with no other changes is impossible
according to Carnot’s postulate; it cannot be done. Therefore no engine which
absorbs a given amount of heat from a higher temperature T, and delivers it at the
temperature T'5 can do more work than a reversible engine operating under the
same temperature conditions.

Now suppose that engine B is also reversible. Then, of course, not only must
W’ be not greater than W, but now we can reverse the argument and show that W
cannot be greater than W’. So, if both engines are reversible they must both do
the same amount of work, and we thus come to Carnot’s brilliant conclusion:
that if an engine is reversible, it makes no difference how it is designed, because the
amount of work one will obtain if the engine absorbs a given amount of heat at
temperature 7'; and delivers heat at some other temperature Ty does not depend
on the design of the engine. Itis a property of the world, not a property of a particu-
lar engine.

If we could find out what the law is that determines how much work we obtain
when we absorb the heat Q; at Ty and deliver heat at Ty, this quantity would be a
universal thing, independent of the substance. Of course if we knew the properties
of a particular substance, we could work it out and then say that all other substances
must give the same amount of work in a reversible engine. That is the key idea, the
clue by which we can find the relationship between how much, for instance, a rub-
ber band contracts when we heat it, and how much it cools when we let it contract.
Imagine that we put that rubber band in a reversible machine, and that we make it
go around a reversible cycle. The net result, the total amount of work done, is
that universal function, that great function which is independent of substance.
So we see that a substance’s properties must be limited in a certain way; one
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cannot make up anything he wants, or he would be able to invent a substance which
he could use to produce more than the maximum allowable work when he carried
it around a reversible cycle. This principle, this limitation, is the only real rule that
comes out of the thermodynamics.

44-4 The efficiency of an ideal engine

Now we shall try to find the law which determines the work W as a function
of @y, Ty, and T,. It s clear that W is proportional to Q;, for if we consider two
reversible engines in parallel, both working together and both double engines, the
combination is also a reversible engine. If each one absorbed heat Q;, the two to-
gether absorb 2Q and the work done is 2, and so on. So it is not unreasonable
that W is proportional to Q;.

Now the next important step is to find this universal law. We can, and will,
do so by studying a reversible engine with the one particular substance whose
laws we know, a perfect gas. It is also possible to obtain the rule by a purely
logical argument, using no particular substance at all. This is one of the very
beautiful pieces of reasoning in physics and we are reluctant not to show it to
you, so for those who would like to see it we shall discuss it in just a moment.
But first we shall use the much less abstract and simpler method of direct calcula-
tion for a perfect gas.

We need only obtain formulas for Q@ and Q, (for Wis just @, — Q5,), the
heats exchanged with the reservoirs during the isothermal expansion or con-
traction. For example, how much heat Q; is absorbed from the reservoir at
temperature 77 during the isothermal expansion [marked (1) in Fig. 44-6] from point
a, at pressure p,, volume V,, temperature Ty, to point b with pressure p;, volume
Vs, and the same temperature 7', ? For a perfect gas each molecule has an energy
that depends only on the temperature, and since the temperature and the number
of molecules are the same at a and at b, the internal energy is the same. There is
no change in U, all the work done by the gas,

W= /abpdV,

during the expansion is energy Q, taken from the reservoir. During the expansion,
pV = NKT,, or

_ NKT,
P=—y
or
b b dV
0, = / pdv = / NKT; 5 (44.4)
or
0, = NKT, ln%

is the heat taken from the reservoir at 7';. In the same way, for the compression at

Ty [curve (3) of Fig. 44-6] the heat delivered to the reservoir at T's is

V..
d

Qs = NkTIn (44.5)

V

To finish our analysis we need only find a relation between V,./V; and V,/V,.
This we do by noting that (2) is an adiabatic expansion from b to ¢, during which
pV" is a constant. Since p¥ = NkT, we can write this as (p¥)V"~! = const or,
in terms of T and ¥, as TV"~! = const, or

T Vi~ ! = TV L (44.6)
Likewise, since (4), the expansion from d to a, is also adiabatic, we find

TV = T,V L (44.6a)
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are equivalent to engine 3.

If we divide this equation by the previous one, we find that V,/V, must equal
V./Va, so the In’s in (44.4) and (44.5) are equal, and that

O, _Q
T—:_Tf' (44.7)

This is the relation we were seeking. Although proved for a perfect gas engine,
we know it must be true for any reversible engine at all.

Now we shall see how this universal law could also be obtained by logical
argument, without knowing the properties of any specific substances, as follows.
Suppose that we have three engines and three temperatures, let us say T'y, T,
and T'3. Let one engine absorb heat @, from the temperature T'; and do a certain
amount of work W3, and let it deliver heat Q3 to the temperature T3 (Fig. 44-8).
Let another engine run backwards between T3 and T';. Suppose that we let the
second engine be of such a size that it will absorb the same heat Q3, and deliver
the heat Q,. We will have to put a certain amount of work, W3, into it—negative
because the engine is running backwards. When the first machine goes through a
cycle, it absorbs heat Q@ and delivers Q3 at the temperature T'3; then the second
machine takes the same heat Q3 out of the reservoir at the temperature T3 and
delivers it into the reservoir at temperature T'5. Therefore the net result of the
two machines in tandem is to take the heat Q, from Ty, and deliver Q, at T,.
The two machines are thus equivalent to a third one, which absorbs @, at Ty,
does work Wi, and delivers heat Q, at T, because W,, = W3 — W3,
as one can immediately show from the first law, as follows:

Wiz — Wis = (Q1— Q3 —(Q2— Q3) = Q1 — Q2= Wis (448)

We can now obtain the laws which relate the efficiencies of the engines, because
there clearly must be some kind of relationship between the efficiencies of engines
running between the temperatures 7; and T3, and between T, and T3, and be-
tween T’y and T's.

We can make the argument very clear in the following way: We have just
seen that we can always relate the heat absorbed at 7'; to the heat delivered at Ty
by finding the heat delivered at some other temperature T;. Therefore we can
get all the engines’ properties if we introduce a standard temperature, analyzing
everything with that standard temperature. In other words, if we knew the effi-
ciency of an engine running between a certain temperature T and a certain arbi-
trary standard temperature, then we could work out the efficiency for any other
difference in temperature. Because we assume we are using only reversible engines,
we can work from the initial temperature down to the standard temperature and
back up to the final temperature again. We shall define the standard temperature
arbitrarily as one degree. We shall also adopt a special symbol for the heat which
is delivered at this standard temperature: we shall call it Q5. In other words, when
a reversible engine absorbs the heat Q at temperature 7, it will deliver, at the unit
temperature, a heat Qg. If one engine, absorbing heat Q, at T, delivers the heat
Qs at one degree, and if an engine absorbing heat Q, at temperature Ty will also
deliver the same heat Qg at one degree, then it follows that an engine which absorbs
heat Q, at the temperature Ty will deliver heat Qs if it runs between T and T, as
we have already proved by considering engines running between three tempera-
tures. So all we really have to do is to find how much heat Q; we need to put in
at the temperature T'; in order to deliver a certain amount of heat Qg at the unit
temperature. If we discover that, we have everything. The heat Q, of course, is
a function of the temperature 7. It is easy to see that the heat must increase as the
temperature increases, for we know that it takes work to run an engine backwards
and deliver heat at a higher temperature. It is also easy to see that the heat Q; must
be proportional to Qg. So the great law is something like this: for a given amount
of heat Qg delivered at one degree from an engine running at temperature T
degrees, the heat Q absorbed must be that amount Qg times some increasing func-
tion of the temperature:

Q = QD). (44.9)
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44-5 The thermodynamic temperature

At this stage we are not going to try to find the formula for the above in-
creasing function of the temperature in terms of our familiar mercury temperature
scale, but instead we shall define temperature by a new scale. At one time ‘““the
temperature” was defined arbitrarily by dividing the expansion of water into even
degrees of a certain size. But when one then measures temperature with a mercury
thermometer, one finds that the degrees are no longer even. But now we can
make a definition of temperature which is independent of any particular substance.
We can use that function f(T), which does not depend on what device we use, be-
cause the efficiency of these reversible engines is independent of their working sub-
stances. Since the function we found is rising with temperature, we will define the
JSunction itself as the temperature, measured in units of the standard one-degree
temperature, as follows:

Q = ST, (44.10)
where
Os = S-1°. 44.11)

This means that we can tell how hot an object is by finding out how much heat is
absorbed by a reversible engine working between the temperature of the object
and the unit temperature (Fig. 44-9). If seven times more heat is taken out of a
boiler than is delivered at a one-degree condenser, the temperature of the boiler
will be called seven degrees, and so forth. So, by measuring how much heat is
absorbed at different temperatures, we determine the temperature. The tempera-
ture defined in this way is called the absolute thermodynamic temperature, and it
is independent of the substance. We shall use this definition exclusively from now
on.*

Now we see that when we have two engines, one working between T'; and
one degree, the other working between T and one degree, delivering the same
heat at unit temperature, then the heats absorbed must be related by

O __¢@ _
'TTI“ “Tf' (44.12)

But that means that if we have a single engine running between T'; and T',, then
the result of the whole analysis, the grand finale, is that Q; isto T'; as Q5 is to Ty,
if the engine absorbs energy Q at temperature 7', and delivers heat Q, at temper-
ature T,. Whenever the engine is reversible, this relationship between the heats
must follow. That is all there is to it: that is the center of the universe of thermo-
dynamics.

If this is all there is to thermodynamics, why is it considered such a difficult
subject? In doing a problem involving a given mass of some substance, the condi-
tion of the substance at any moment can be described by telling what its tempera-
ture is and what its volume is. If we know the temperature and volume of a sub-
stance, and that the pressure is some function of the temperature and volume,
then we know the internal energy. One could say, “I do not want to do it that way.
Tell me the temperature and the pressure, and I will tell you the volume. I can
think of the volume as a function of temperature and pressure, and the internal
energy as a function of temperature and pressure, and so on.” That is why thermo-
dynamics is hard, because everyone uses a different approach. If we could only sit
down once and decide on our variables, and stick to them, it would be fairly easy.

Now we start to make deductions. Just as F = ma is the center of the uni-
verse in mechanics, and it goes on and on and on after that, in the same way the
principle just found is all there is to thermodynamics. But can one make conclu-
sions out of it?

* We have previously defined our scale of temperature in a different way, namely by
stating that the mean kinetic energy of a molecule in a perfect gas is proportional to the
temperature, or that the perfect gas law says p¥ is proportional to 7. Is this new definition
equivalent? Yes, since the final result (44.7) derived from the gas law is the same ad that
derived here. We shall discuss this point again in the next chapter.
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We begin. To obtain our first conclusion, we shall combine both laws, the
law of conservation of energy and this law which relates the heats Q5 and Q,,
and we can easily obtain the efficiency of a reversible engine. From the first law,
we have W = Q; — Q2. According to our new principle,

T
0, = Tle,

so the work becomes
T — T
W= Ql( 2) 0, L T: T 2, (44.13)

which tells us the efficiency of the engime—how much work we get out of so much
heat. The efficiency of an engine is proportional to the difference in the tempera-
tures between which the engine runs, divided by the higher temperature:

_Th—Tp
[N T,
The efficiency cannot be greater than unity and the absolute temperature cannot

be less than zero, absolute zero. So, since T'» must be positive, the efficiency is
always less than unity. That is our first conclusion.

Efficiency = (44.14)

44-6 Entropy

Equation (44.7) or (44.12) can be interpreted in a special way. Working
always with reversible engines, a heat Q; at temperature Ty is “equivalent” to
Qs at Ty if Q1/Ty = Q9/T5, in the sense that as one is absorbed the other is
delivered. This suggests that if we call Q/T something, we can say: in a reversible
process as much Q/T is absorbed as is liberdted; there is no gain or loss of Q/T.
This Q/T is called entropy, and we say “‘there is no net change in entropy in a
reversible cycle.” If T is 1°, then the entropy is Q/1° or, as we symbolized it,
QOs/1° = S. Actually, S is the letter usually used for entropy, and it is numerically
equal to the heat (which we have called Q) delivered to a 1°-reservoir (entropy is
not itself a heat, it is heat divided by a temperature, hence it is measured in joules
per degree).

Now it is interesting that besides the pressure, which is a function of the
temperature and the volume, and the internal energy, which is a function of
temperature and volume, we have found another quantity which is a function of
the condition, i.e., the entropy of the substance. Let us try to explain how we
compute it, and what we mean when we call it a “function of the condition.”
Consider the system in two different conditions, much as we had in the experiment
where we did the adiabatic and isothermal expansions. (Incidentally, there is no
need that a heat engine have only two reservoirs, it could have three or four differ-
ent temperatures at which it takes in and delivers heats, and so on.) We can
move around on a pV diagram all over the place, and go from one condition to
another. In other words, we could say the gas is in a certain condition a, and then
it goes over to some other condition, b, and we will require that this transition,
made from a to b, be reversible. Now suppose that all along the path from ato b
we have little reservoirs at diﬂerent"temperatures, so that the heat dQ removed
from the substance at each little step is delivered to each reservoir at the tempera-
ture corresponding to that point on the path. Then let us connect all these
reservoirs, by reversible heat engines, to a single reservoir at the unit temperature.
When we are finished carrying the substance from a to b, we shall bring all the
reservoirs back to their original condition. Any heat dQ that has been absorbed
from the substance at temperature T has now been converted by a reversible
machine, and a certain amount of entropy dS has been delivered at the unit
temperature as follows:

dsS = dQ/T. (44.15)

Let us compute the total amount of entropy which has been delivered. The
entropy difference, or the entropy needed to go front-a to b by this particular

44-10




reversible transformation, is the total entropy, the total of the entropy taken out
of the little reservoirs, and delivered at the unit temperature:

b
Sy — S, = / dTQ' (44.16)

The question is, does the entropy difference depend upon the path taken? There
is more than one way to go from a to b. Remember that in the Carnot cycle we
could go from a to ¢ in Fig. 44-6 by first expanding isothermally and then adi-
abatically; or we could first expand adiabatically and then isothermally. So the
question is whether the entropy change which occurs when we go from a to b in
Fig. 44-10 is the same on one route as it is on another. It must be the same, be-
cause if we went all the way around the cycle, going forward on one path and
backward on another, we would have a reversible engine, and there would be no
loss of heat to the reservoir at unit temperature. In a totally reversible cycle, no
heat must be taken from the reservoir at the unit temperature, so the entropy
needed to go from a to b is the same over one path as it is over another. It is
independent of path, and depends only on the endpoints. We can, therefore, say
that there is a certain function, which we call the entropy of the substance, that
depends only on the condition, i.e., only on the volume and temperature.

We can find a function S(V, T') which has the property that if we compute the
change in entropy, as the substance is moved along any reversible path, in terms
of the heat rejected at unit temperature, then

AS = / df , (44.17)

where dQ is the heat removed from the substance at temperature 7. This total
entropy change is the difference between the entropy calculated at the initial and
final points:
b do

AS = S(Vo, Tp) — SV, Ty) = / - (44.18)
This expression does not completely define the entropy, but rather only the differ-
ence of entropy between two different conditions. Only if we can evaluate the
entropy for one special condition can we really define S absolutely.

For a long time it was believed that absolute entropy meant nothing—that
only differences could be defined—but finally Nernst proposed what he called
the heat theorem, which is also called the third law of thermodynamics. It is very
simple. We will say what it is, but we will not explain why it is true. Nernst’s
postulate states simply that the entropy of any object at absolute zero is zero.
We know of one case of 7 and V, namely T = 0, where S is zero; and so we can
get the entropy at any other point.

To give an illustration of these ideas, let us calculate the entropy of a perfect
gas. In an isothermal (and therefore reversible) expansion, fdQ/T is Q/T,
since T is constant. Therefore (from 44.4) the change in entropy is

SWa, Ty — S(Vy, T) = Nkln I—ijb,

so S(V, T) = NklIn V plus some function of T only. How does S depend on T'?
We know that for a reversible adiabatic expansion, no heat is exchanged. Thus
the entropy does not change even though V changes, provided that 7" changes also,
such that T¥"~! = constant. Can you see that this implies that

SV, T) = Nk{an—i— Tl—llnT] +a,

where a is some constant independent of both ¥ and T? [a is called the chemical
constant. It depends on the gas in question, and may be determined experimentally
from the Nernst theorem by measuring the heat liberated in cooling and condensing
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the gas until it is brought to a solid (or for helium, a liquid) at 0°, by integrating
f dQ/T. It can also be determined theoretically by means of Planck’s constant
and quantum mechanics, but we shall not study it in this course.]

Now we shall remark on some of the properties of the entropy of things. We
first remember that if we go along a reversible cycle from a to b, then the entropy
of the substance will change by S, — S,. And we remember that as we go along
the path, the entropy—the heat delivered at unit temperature—increases accord-
ing to the rule dS = dQ/T, where dQ is the heat we remove from the substance
when its temperature is 7.

We already know that if we have a reversible cycle, the total entropy of
everything is not changed, because the heat Q, absorbed at T'; and the heat Q,
delivered at T'; correspond to equal and opposite changes in entropy, so that the
net change in the entropy is zero. So for a reversible cycle there is no change in
the entropy of anything, including the reservoirs. This rule may look like the
conservation of energy again, but it is not; it applies only to reversible cycles.
If we include irreversible cycles there is no law of conservation of entropy.

We shall give two examples. First, suppose that we do irreversible work on
an object by friction, generating a heat Q on some object at temperature 7. The
entropy is increased by Q/7. The heat Q is equal to the work, and thus when
we do a certain amount of work by friction against an object whose temperature
is T, the entropy of the whole world increases by W/T.

Another example of irreversibility is this: If we put together two objects
that are at different temperatures, say T and Ty, a certain amount of heat will flow
from one to the other by itself. Suppose, for instance, we put a hot stone in cold
water. Then when a certain heat AQ is transferred from T'; to T2, how much does
the entropy of the hot stone change? It decreases by AQ/T;. How much does the
water entropy change? It increases by AQ/Ts. The heat will, of course, flow only
from the higher temperature T'; to the lower temperature T3, so that AQ is positive
if T, is greater than T'5. So the change in entropy of the whole world is positive,
and it is the difference of the two fractions:

AS = 2@ _AQ (44.19)

So the following proposition is true: in any process that is irreversible, the
entropy of the whole world is increased. Only in reversible processes does the
entropy remain constant. Since no process is absolutely reversible, there is always
at least a small gain in the entropy; a reversible process is an idealization in which
we have made the gain of entropy minimal.

Unfortunately, we are not going to enter into the field of thermodynamics
very far. Our purpose is only to illustrate the principal ideas involved and the
reasons why it is possible to make such arguments, but we will not use thermo-
dynamics very much in this course. Thermodynamics is used very often by engi-
neers and, particularly, by chemists. So we must learn our thermodynamics in
practice in chemistry or engineering. Because it is not worth while duplicating
everything, we shall just give some discussion of the origin of the theory, rather
than much detail for special applications.

The two laws of thermodynamics are often stated this way:

First law:  the energy of the universe is always constant.
Second law: the entropy of the universe is always increasing.

That is not a very good statement of the second law; it does not say, for example,
that in a reversible cycle the entropy stays the same, and it does not say exactly
what the entropy is. It is just a clever way of remembering the two laws, but it
does not really tell us exactly where we stand. We have summarized the laws dis-
cussed in this chapter in Table 44-1. In the next chapter we shall apply these laws
to discover the relationship between the heat generated in the expansion of a
rubber band, and the extra tension when it is heated.
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Table 44-1
Summary of the laws of thermodynamics

First law:
Heat put into a system 4- Work done on a system = Increase in internal energy of
the system:

dQ + dw = dU.

Second law:
A process whose only net result is to take heat from a reservoir and convert it to work
is impossible.
No heat engine taking heat Q; from T'; and delivering heat Qs at T2 can do more work
than a reversible engine, for which

W=Q1—Q2=Q1<T1—;—TE)-

The entropy of a system is defined this way:
(a) If heat AQ is added reversibly to a system at temperature 7, the increase in entropy
of the system is AS = AQ/T.

(b) At T = 0, S = 0 (third law).
In a reversible change, the total entropy of all parts of the system (including reservoirs)
does not change.

In irreversible change, the total entropy of the system always increases.
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