30

Diffraction

30-1 The resultant amplitude due to » equal oscillators

This chapter is a direct continuation of the previous one, although the name
has been changed from Interference to Diffraction. No one has ever been able to
define the difference between interference and diffraction satisfactorily. It is justa
question of usage, and there is no specific, important physical difference between
them. The best we can do, roughly speaking, is to say that when there are only a few
sources, say two, interfering, then the result is usually called interference, but if
there is a large number of them, it seems that the word diffraction is more often
used. So, we shall not worry about whether it is interference or diffraction, but
continue directly from where we left off in the middle of the subject in the last
chapter.

Thus we shall now discuss the situation where there are n equally spaced os-
cillators, all of equal amplitude but different from one another in phase, either
because they are driven differently in phase, or because we are looking at them
at an angle such that there is a difference in time delay. For one reason or another,
we have to add something like this:

R = A[cos wt + cos(wt + ¢) + cos(wt + 2¢) + - -+ 4 cos(wt + (n — D)¢)],
(30.1)

where ¢ is the phase difference between one oscillator and the next one, as seen in
a particular direction. Specifically, ¢ = « + 2wdsin 6/A. Now we must add all
the terms together. We shall do this geometrically. The first one is of length A4,
and it has zero phase. The next is also of length 4 and it has a phase equal to ¢.
The next one is again of length 4 and it has a phase equal to 2¢, and so on. So we
are evidently going around an equiangular polygon with n sides (Fig. 30-1).

Now the vertices, of course, all lie on a circle, and we can find the net amplitude
most easily if we find the radius of that circle. Suppose that Q is the center of the
circle. Then we know that the angle O QS is just a phase angle ¢. (This is because
the radius QS bears the same geometrical relation to A, as QO bears to A, so
they form an angle ¢ between them.) Therefore the radius » must be such that
A = 2rsin ¢/2, which fixes . But the large angle OQT is equal to n¢, and we
thus find that 4 = 2rsin n¢/2. Combining these two results to eliminate r, we
get

_ ,sinng/2
Ap = Sin /2 (30.2)
The resultant intensity is thus
sin® ng/2
= o rea (303)

Now let us analyze this expression and study some of its consequences. In
the first place, we can check it for n = 1. It checks: 7 = I,. Next, we check it
for n = 2: writing sin ¢ = 2sin ¢/2 cos ¢/2, we find that Agp = 24 cos ¢/2,
which agrees with (29.12).

Now the idea that led us to consider the addition of several sources was that
we might get a much stronger intensity in one direction than in another; that the
nearby maxima which would have been present if there were only two sources
will have gone down in strength. In order to see this effect, we plot the curve that
comes from (30.3), taking n to be enormously large and plotting the region near
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Fig. 30~-3. A linear array of n equal
oscillators, driven with phases oy = sa.

¢ = 0. In the first place, if ¢ is exactly 0, we have 0/0, but if ¢ is infinitesimal, the
ratio of the two sines squared is simply n?, since the sine and the angle are approxi-
mately equal. Thus the intensity of the maximum of the curve is equal to n2 times
the intensity of one oscillator. That is easy to see, because if they are all in phase,
then the little vectors have no relative angle and all n of them add up so the ampli-
tude is n times, and the intensity n® times, stronger.

As the phase ¢ increases, the ratio of the two sines begins to fall off, and the
first time it reaches zero is when n¢/2 = , because sin 7 = 0. In other words,
¢ = 2m/n corresponds to the first minimum in the curve (Fig. 30-2). In terms
of what is happening with the arrows in Fig. 30-1, the first minimum occurs when
all the arrows come back to the starting point; that means that the total accumu-
lated angle in all the arrows, the total phase difference between the first and last
oscillator, must be 27 to complete the circle.

Now we go to the next maximum, and we want to see that it is really much
smaller than the first one, as we had hoped. We shall not go precisely to the maxi-
mum position, because both the numerator and the denominator of (30.3) are
variant, but sin ¢/2 varies quite slowly compared with sin n¢/2 when n is large,
so when sin n¢/2 = 1 we are very close to the maximum. The next maximum of
sin? ng/2 comes at ng/2 = 3mw/2, or ¢ = 37/n. This corresponds to the arrows
having traversed the circle one and a half times. On putting ¢ = 37/# into the
formula to find the size of the maximum, we find that sin? 37/2 = 1 in the nu-
merator (because that is why we picked this angle), and in the denominator we
have sin® 3w/2n. Now if n is sufficiently large, then this angle is very small and
the sine is equal to the angle; so for all practical purposes, we can put sin 37/2n =
3w/2n. Thus we find that the intensity at this maximum is I = Io(4n?/97?). But
n*I, was the maximum intensity, and so we have 4/972 times the maximum in-
tensity, which is about 0.047, less than 5 percent, of the maximum intensity! Of
course there are decreasing intensities farther out. So we have a very sharp central
maximum with very weak subsidiary maxima on the sides.

It is possible to prove that the area of the whole curve, including all the little
bumps, is equal to 2mnl,, or twice the area of the dotted rectangle in Fig. 30-2.

Now let us consider further how we may apply Eq. (30.3) in different cir-
cumstances, and try to understand what is happening. Let us consider our sources
to be all on a line, as drawn in Fig. 30-3. There are n of them, all spaced by a
distance d, and we shall suppose that the intrinsic relative phase, one to the next,
is a. Then if we are observing in a given direction § from the normal, there is an
additional phase 2md sin /X because of the time delay between each successive
two, which we talked about before. Thus

¢ = a + 2wdsin 6/A

30.9)
a + kdsin 6.

I

First, we shall take the case « = 0. That is, all oscillators are in phase, and
we want to know what the intensity is as a function of the angle 8. In order to
find out, we merely have to put ¢ = kdsin 6 into formula (30.3) and see what
happens. In the first place, there is a maximum when ¢ = 0. That means that
when all the oscillators are in phase there is a strong intensity in the direction
6 = 0. On the other hand, an interesting question is, where is the first minimum?
That occurs when ¢ = 2m/n. In other words, when 27d sin §/\ = 2m/n, we
get the first minumum of the curve. If we get rid of the 27’s so we can look at it a
little better, it says that

ndsin 6 = . (30.5)

Now let us understand physically why we get a minimum at that position. nd is
the total length L of the array. Referring to Fig. 30-3, we see that nd sin § =
Lsin 6 = A. What (30.5) says is that when A is equal to one wavelength, we get a
minimum. Now why do we get a minimum when A = \? Because the contribu-
tions of the various oscillators are then uniformly distributed in phase from 0° to

30-2



360°. The arrows (Fig. 30-1) are going around a whole circle—we are adding equal
vectors in all directions, and such a sum is zero. So when we have an angle such
that A = ), we get a minimum. That is the first minimum.

There is another important feature about formula (30.3), which is that if the
angle ¢ is increased by any multiple of 27, it makes no difference to the formula.
So we will get other strong maxima at ¢ = 2w, 4m, 67, and so forth. Near each of
these great maxima the pattern of Fig. 30-2 is repeated. We may ask ourselves,
what is the geometrical circumstance that leads to these other great maxima?
The condition is that ¢ = 2mm, where m is any integer. That is, 2wd sin §/\ =
27m. Dividing by 27, we see that

dsin § = m\. (30.6)

This looks like the other formula, (30.5). No, that formula was nd sin § = .
The difference is that here we have to look at the individual sources, and when we
say dsin @ = m)\, that means that we have an angle 6 such that § = m\. In other
words, each $ource is now contributing a certain amount, and successive ones ate
out of phase by a whole multiple of 360°, and therefore are contributing in phase,
because out of phase by. 360° is the same as being in phase. So they all contribute
in phase and produce just as good a maximum as the one for m = 0 that we dis-
cussed before. The subsidiary bumps, the whole shape of the pattern, is just like
the one near ¢ = 0, with exactly the same minima on each side, etc. Thus such an
array will send beams in various directions—each beam having a strong central
maximum and a certain number of weak “side lobes.” The various strong beams
are referred to as the zero-order beam, the first-order beam, etc., according to the
value of m. m is called the order of the beam.

We call attention to the fact that if d is less than A, Eq. (30.6) can have no
solution except m = 0, so that if the spacing is too small there is only one possible
beam, the zero-order one centered at § = 0. (Of course, there is also a beam in
the opposite direction.) In order to get subsidiary great maxima, we must have
the spacing d of the array greater than one wavelength.

30-2 The diffraction grating

In technical work with antennas and wires it is possible to arrange that all
the phases of the little oscillators, or antennas, are equal. The question is whether
and how we can do a similar thing with light. We cannot at the present time literally
make little optical-frequency radio stations and hook them up with infinitesimal
wirés and drive them all with a given phase. But there is a very easy way to do what
amounts to the same thing,

Suppose that we had a lot of parallel wires, equally spaced at a spacing d,
and a radiofrequency source very far away, practically at infinity, which is generat-
ing an electric field which arrives at each one of the wires at the same phase (it is
so far away that the time delay is the same for all of the wires). (One can work out
cases with curved arrays, but let us take a plane one.) Then the external electric
field will drive the electrons up and down in each wire. That is, the field which is
coming from the original source will shake the electrons up and down, and in
moving, these represent new generators. This phenomenon is called scattering:
a light wave from some source can induce a motion of the electrons in a piece of
material, and these motions generate their own waves. Therefore all that is
necessary is to set up a lot of wires, equally spaced, drive them with a radiofrequency
source far away, and we have the situation that we want, without a whole lot of
special wiring. If the incidence is normal, the phases will be equal, and we will
get exactly the circumstance we have been discussing. Therefore, if the wire
spacing is greater than the wavelength, we will get a strong intensity of scattering
in the normal direction, and in certain other directions given by (30.6).

This can also be done with light! Instead of wires, we use a flat piece of glass
and make notches in it such that each of the notches scatters a little differently
than the rest of the glass. If we then shine light on the glass, each one of the notches
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Fig. 30-4. The path difference for
rays scattered from adjacent rulings of a
grating is d sin 6,y — d sin 6,

will represent a source, and if we space the lines very finely, but not closer than a
wavelength (which is technically almost impossible anyway), then we would expect
a miraculous phenomenon: the light not only will pass straight through, but there
will also be a strong beam at a finite angle, depending on the spacing of the notches!
Such objects have actually been made and are in common use—they are called
diffraction gratings.

In one of its forms, a diffraction grating consists of nothing but a plane glass
sheet, transparent and colorless, with scratches on it. There are often several
hundred scratches to the millimeter, very carefully arranged so as to be equally
spaced. The effect of such a grating can be seen by arranging a projector so as to
throw a narrow, vertical line of light (the image of a slit) onto a screen. When we
put the grating into the beam, with its scratches vertical, we see that the line is still
there but, in addition, on each side we have another strong patch of light which is
colored. This, of course, is the slit image spread out over a wide angular range,
because the angle 6 in (30.6) depends upon A, and lights of different colors, as we
know, correspond to different frequencies, and therefore different wavelengths.
The longest visible wavelength is red, and since d'sin § = ), that requires a larger
6. And we do, in fact, find that red is at a greater angle out from the central image!
There should also be a beam on the other side, and indeed we see one on the screen.
Then, there might be another solution of (30.6) when m = 2. We do see that there
is something vaguely there—very weak—and there are even other beams beyond.

We have just argued that all these beams ought to be of the same strength,
but we see that they actually are not and, in fact, not even the first ones on the right
and left are equal! The reason is that the grating has been carefully built to do just
this. How? If the grating consists of very fine notches, infinitesimally wide, spaced
evenly, then all the intensities would indeed be equal. But, as a matter of fact,
although we have taken the simplest case, we could also have considered an array
of pairs of antennas, in which each member of the pair has a certain strength and
some relative phase. In this case, it is possible to get intensities which are different
in the different orders. A grating is often made with little “sawtooth” cuts instead
of little symmetrical notches. By carefully arranging the “sawteeth,” more light
may be sent into one particular order of spectrum than into the others. In a
practical grating, we would like to have as much light as possible in one of the
orders. This may seem a complicated point to bring in, but it is a very clever thing
to do, because it makes the grating more useful.

So far, we have taken the case where all the phases of the sources are equal.
But we also have a formula for ¢ when the phases differ from one to the next
by an angle «. That requires wiring up our antennas with a slight phase shift
between each one. Can we do that with light? Yes, we can do it very easily, for
suppose that there were a source of light at infinity, at an angle such that the light
is coming in at an angle 6;,, and let us say that we wish to discuss the scattered
beam, which is leaving at an angle 8,.:. The 8, is the same 8 as we have had before,
but the 6;, is merely a means for arranging that the phase of each source is
different: the light coming from the distant driving source first hits one scratch,
then the next, then the next, and so on, with a phase shift from one to the other,
which, as we see, is « = —d sin 6;,/\. Therefore we have the formula for a grating
in which light both comes in and goes out at an angle:

¢ = 2mwd sin b,y/\N — 27d sin 6;,/\. (30.7)

Let us try to find out where we get strong intensity in these circumstances. The
condition for strong intensities is, of course, that ¢ should be a multiple of 2.
There are several interesting points to be noted.

One case of rather great interest is that which corresponds to m = 0, where
d is less than A; in fact, this is the only solution. In this case we see that sin 6y, =
sin 6;,, which means that the light comes out in the same direction as the light
which was exciting the grating. We might think that the light “goes right through.”
No, it is different light that we are talking about. The light that goes right through
is from the original source; what we are talking about is the new light which is
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generated by scattering. It turns out that the scattered light is going in the same
direction as the original light, in fact it can interfere with it—a feature which we
will study later.

There is another solution for this same case. For a given 6;,, 6,4, may be the
supplement of 6;,. So not only do we get a beam in the same direction as the in-
coming beam but also one in another direction, which, if we consider it carefully,
is such that the angle of incidence is equal to the angle of scattering. This we call the
reflected beam.

So we begin to understand the basic machinery of reflection: the light that
comes in generates motions of the atoms in the reflector, and the reflector then
regenerates a new wave, and one of the solutions for the direction of scattering, the
only solution if the spacing of the scatterers is small compared with one wavelength,
is that the angle at which the light comes out is equal to the angle at which it comes
in!

Next, we discuss the special case when d — 0. That is, we have just a solid
piece of material, so to speak, but of finite length. In addition, we want the phase
shift from one scatterer to the next to go to zero. In other words, we put more and
mote antennas between the other ones, so that each of the phase differences is
getting smaller, but the number of antennas is increasing in such a way that the
total phase difference, between one end of the line and the other, is constant.
Let us see what happens to (30.3) if we keep the difference in phase n¢ from one
end to the other constant (say n¢ = ), letting the number go to infinity and the
phase shift ¢ of each one go to zero. But now ¢ is so small that sin ¢ = ¢, and if
we also recognize n’l, as I,, the maximum intensity at the center of the beam,
we find

I = 41, sin? 1&/82. (30.8)

This limiting case is what is shown in Fig. 30-2.

In such circumstances we find the same general kind of a picture as for finite
spacing with d > A; all the side lobes are practically the same as before, but there
are no higher-order maxima. If the scatterers are all in phase, we get a maximum
in the direction 6, = 0, and a minimum when the distance A is equal to A, just
as for finite d and n. So we can even analyze a continuous distribution of
scatterers or oscillators, by using integrals instead of summing.

As an example, suppose there were a long line of oscillators, with the charge
oscillating along the direction of the line (Fig. 30-5). From such an array the
greatest intensity is perpendicular to the line. There is a little bit of intensity up
and down from the equatorial plane, but it is very slight. With this result, we can
handle a more complicated situation. Suppose we have a set of such lines, each
producing a beam only in a plane perpendicular to the line. To find the intensity
in various directions from a series of long wires, instead of infinitesimal wires, is
the same problem as it was for infinitesimal wires, so long as we are in the central
plane perpendicular to the wires; we just add the contribution from each of the
long wires. That is why, although we actually analyzed only tiny antennas, we
might as well have used a grating with long, narrow slots. Each of the long slots
produces an effect only in its own direction, not up and down, but they are all
set next to each other horizontally, so they produce interference that way.

Thus we can build up more complicated situations by having various distribu-
tions of scatterers in lines, planes, or in space. The first thing we did was to con-
sider scatterers in a line, and we have just extended the analysis to strips; we can
work it out by just doing the necessary summations, adding the contributions from
the individual scatterers. The principle is always the same.

30-3 Resolving power of a grating

We are now in a position to understand a number of interesting phenomena.
For example, consider the use of a grating for separating wavelengths. We noticed
that the whole spectrum was spread out on the screen, so a grating can be used as
an instrument for separating light into its different wavelengths. One of the
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strong maximum and many weak ‘‘side
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Fig. 30-6. lllustration of the Rayleigh
criterion. The maximum of one pattern
falls on the first minimum of the other.

interesting questions is: supposing that there were two sources of slightly different
frequency, or slightly different wavelength, how close together in wavelength could
they be such that the grating would be unable to tell that there were really two
different wavelengths there? The red and the blue were clearly separated. But
when one wave is red and the other is slightly redder, very close, how close can they
be? This is called the resolving power of the grating, and one way of analyzing
the problem is as follows. Suppose that for light of a certain color we happen to
have the maximum of the diffracted beam occurring at a certain angle. If we vary
the wavelength the phase 2wd sin 6/\ is different, so of course the maximum
occurs at a different angle. That is why the red and blue are spread out. How
different in angle must it be in order for us to be able to see it? If the two maxima
are exactly on top of each other, of course we cannot see them. If the maximum
of one is far enough away from the other, then we can see that there is a double
bump in the distribution of light. In order to be able to just make out the double
bump, the following simple criterion, called Rayleigh’s criterion, is usually used
(Fig. 30-6). Itis that the first minimum from one bump should sit at the maximum
of the other. Now it is very easy to calculate, when one minimum sits on the other
maximum, how much the difference in wavelength is. The best way to do it is
geometrically.

In order to have a maximum for wavelength )\, the distance A (Fig. 30-3)
must be n\’, and if we are looking at the mth-order beam, it is mn)’. In other words,
27d sin 8/\ = 2mm, so nd sin 6, which is A, is A’ times n, or mn)\. For the other
beam, of wavelength A\, we want to have a minimum at this angle. That is, we want
A to be exactly one wavelength N\ more than mnX. Thatis, A = mn\ + A = mn\.
Thus if A’ = A + A\, we find

AN = 1/mn. (30.9)

The ratio M/AX is called the resolving power of a grating; we see that it is equal to
the total number of lines in the grating, times the order. It is not hard to prove
that this formula is equivalent to the formula that the error in frequency is equal
to the reciprocal time difference between extreme paths that are allowed to interfere:*

Ay = 1/T.

In fact, that is the best way to remember it, because the general formula works
not only for gratings, but for any other instrument whatsoever, while the special
formula (30.9) depends on the fact that we are using a grating.

30-4 The parabolic antenna

Now let us consider another problem in resolving power. This has to do with
the antenna of a radio telescope, used for determining the position of radio sources
in the sky, i.e., how large they are in angle. Of course if we use any old antenna
and find signals, we would not know from what direction they came. We are
very interested to know whether the source is in one place or another. One way
we can find out is to lay out a whole series of equally spaced dipole wires on the
Australian landscape. Then we take all the wires from these antennas and feed
them into the same receiver, in such a way that all the delays in the feed lines are
equal. Thus the receiver receives signals from all of the dipoles in phase. That s,
it adds all the waves from every one of the dipoles in the same phase. Now what
happens? If the source is directly above the array, at infinity or nearly so, then
its radiowaves will excite all the antennas in the same phase, so they all feed the
receiver together.

Now suppose that the radio source is at a slight angle 9 from the vertical.
Then the various antennas are receiving signals a little out of phase. The receiver
adds all these out-of-phase signals together, and so we get nothing, if the angle

*Inourcase T = A/c = mn\/c, where c is the speed of light. The frequency » = ¢/,
S0 Av = cAN/A2,
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0is too big. How big may the angle be? Answer: we get zero if the angle A/L = ¢
(Fig. 30-3) corresponds to a 360° phase shift, that is, if A is the wavelength ).
This is because the vector contributions form together a complete polygon with
zero resultant. The smallest angle that can be resolved by an antenna array of
length Lis ¢ = A/L. Notice that the receiving pattern of an antenna such as this
is exactly the same as the intensity distribution we would get if we turned the
receiver around and made it into a transmitter. This is an example of what is
called a reciprocity principle. It turns out, in fact, to be generally true for any
arrangement of antennas, angles, and so on, that if we first work out what the
relative intensities would be in various directions if the receiver were a transmitter
instead, then the relative directional sensitivity of a receiver with the same external
wiring, the same array of antennas, is the same as the relative intensity of emission
would be if it were a transmitter.

Some radio antennas are made in a different way. Instead of having a whole
lot of dipoles in a long line, with a lot of feed wires, we may arrange them not in a
line but in a curve, and put the receiver at a certain point where it can detect the
scattered waves. This curve is cleverly designed so that if the radiowaves are
coming down from above, and the wires scatter, making a new wave, the wires
are so arranged that the scattered waves reach the receiver all at the same time
(Fig. 26-12). 1In other words, the curve is a parabola, and when the source is ex-
actly on its axis, we get a very strong intensity at the focus. In this case we under-
stand very clearly what the resolving power of such an instrument is. The arranging
of the antennas on a parabolic curve is not an essential point. It is only a con-
venient way to get all the signals to the same point with no relative delay and
without feed wires. The angle such an instrument can resolve is still § — ML,
where L is the separation of the first and last antennas. It does not depend on the
spacing of the antennas and they may be very close together or in fact be all one
piece of metal. Now we are describing a telescope mirror, of course. We have found
the resolving power of a telescope! (Sometimes the resolving power is written
9 = 1.22\/L, where L is the diameter of the telescope. The reason that it is not
exactly /L is this: when we worked out that § = \/L, we assumed that all the
lines of dipoles were equal in strength, but when we have a circular telescope,
which is the way we usually arrange a telescope, not as much signal comes from
the outside edges, because it is not like a square, where we get the same intensity
all along a side. We get somewhat less because we are using only part of the tele-
scope there; thus we can appreciate that the effective diameter is a little shorter
than the true diameter, and that is what the 1.22 factor tells us. In any case, it seems
a little pedantic to put such precision into the resolving power formula.*)

30-5 Colored films; crystals

The above, then, are some of the effects of interference obtained by adding
the various waves. But there are a number of other examples, and even though we
do not understand the fundamental mechanism yet, we will some day, and we can
understand even now how the interference occurs. For example, when a light
wave hits a surface of a material with an index n, let us say at normal incidence,
some of the light is reflected. The reason for the reflection we are not in a position
to understand right now; we shall discuss it later. But suppose we know that some
of the light is reflected both on entering and leaving a refracting medium. Then,
if we look at the reflection of a light source in a thin film, we see the sum of two
waves; if the thicknesses are small enough, these two waves will produce an inter-
ference, either constructive or destructive, depending on the signs of the phases.
It might be, for instance, that for red light, we get an enhanced reflection, but for

* This is because Rayleigh’s criterion is a rough idea in the first place, It tells you where
it begins to get very hard to tell whether the image was made by one or by two stars.
Actually, if sufficiently careful measurements of the exact intensity distribution over the
diffracted image spot can be made, the fact that two sources make the spot can be proved
even if 6 is less than \/L.

30-7



Opaque Screen
Object

Fig. 30-7. A distant light source
casts a shadow of an opaque object on a
screen.

blue light, which has a different wavelength, perhaps we get a destructively inter-
fering reflection, so that we see a bright red reflection. If we change the thickness,
i.e., if we look at another place where the film is thicker, it may be reversed, the red
interfering and the blue not, so it is bright blue, or green, or yellow, or whatnot,
So we see colors when we look at thin films and the colors change if we look at
different angles, because we can appreciate that the timings are different at different
angles. Thus we suddenly appreciate another hundred thousand situations involv-
ing the colors that we see on oil fims, soap bubbles, etc. at different angles. But the
principle is all the same: we are only adding waves at different phases.

As another important application of diffraction, we may mention the following.
We used a grating and we saw the diffracted image on the screen. If we had used
monochromatic light, it would have been at a certain specific place. Then there
were various higher-order images also. From the positions of the images, we could
tell how far apart the lines on the grating were, if we knew the wavelength of the
light. From the difference in intensity of the various images, we could find out the
shape of the grating scratches, whether the grating was made of wires, sawtooth
notches, or whatever, without being able to see them. This principle is used to dis-
cover the positions of the atoms in a crystal. The only complication is that a crystal
is three-dimensional;; it is a repeating three-dimensional array of atoms. We cannot
use ordinary light, because we must use something whose wavelength is less than
the space between the atoms or we get no effect; so we must use radiation of
very short wavelength, i.e., x-rays. So, by shining x-rays into a crystal and by
noticing how intense is the reflection in the various orders, we can determine the
arrangement of the atoms inside without ever being able to see them with the eye!
It is in this way that we know the arrangement of the atoms in various substances,
which permitted us to draw those pictures in the first chapter, showing the arrange-
ment of atoms in salt, and so on. We shall later come back to this subject and dis-
cuss it in more detail, and therefore we say no more about this most remarkable
idea at present.

30-6 Diffraction by opaque screens

Now we come to a very interesting situation. Suppose that we have an opaque
sheet with holes in it, and a light on one side of it. We want to know what the
intensity is on the other side. What most people say is that the light shines through
the holes, and produces an effect on the other side. It will turn out that one gets
the right answer, to an excellent approximation, if he assumes that there are sources
distributed with uniform density across the open holes, and that the phases of
these sources are the same as they would have been if the opaque material were
absent. Of course, actually there are no sources at the holes, in fact that is the only
place that there are certainly no sources. Nevertheless, we get the correct diffraction
patterns by considering the holes to be the only places that there are sources; that
is a rather peculiar fact. We shall explain later why this is true, but for now let us
just suppose that it is.

In the theory of diffraction there is another kind of diffraction that we should
briefly discuss. It is usually not discussed in an elementary course as early as this,
only because the mathematical formulas involved in adding these little vectors are
a little elaborate. Otherwise it is exactly the same as we have been doing all along.
All the interference phenomena are the same; there is nothing very much more
advanced involved, only the circumstances are more complicated and it is harder
to add the vectors together, that is all.

Suppose that we have light coming in from infinity, casting a shadow of an
object. Figure 30-7 shows a screen on which the shadow of an object AB is made
by a light source very far away compared with one wavelength. Now we would
expect that outside the shadow, the intensity is all bright, and inside it, it is all dark.
As a matter of fact, if we plot the intensity as a function of position near the shadow
edge, the intensity rises and then overshoots, and wobbles, and oscillates about
in a very peculiar manner near this edge (Fig. 30~8). We now shall discuss the
reason for this. If we use the theorem that we have not yet proved, then we can
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replace the actual problem by a set of effective sources uniformly distributed over
the open space beyond the object.

We imagine a large number of very closely spaced antennas, and we want the
intensity at some point P. That looks just like what we have been doing. Not
quite; because our screen is not at infinity. We do not want the intensity at infinity,
but at a finite point. To calculate the intensity at some particular place, we have to
add the contributions from all the antennas. First there is an antenna at D,
exactly opposite P; if we go up a little bit in angle, let us say a height A4, then there
is an increase in delay (there is also a change in amplitude because of the change in
distance, but this is a very small effect if we are at all far away, and is much less
important than the difference in the phases). Now the path difference EP — DP
is h?/2s, so that the phase difference is proportional to the square of how far we
go from D, while in our previous work s was infinite, and the phase difference was
linearly proportional to 4. When the phases are linearly proportional, each vector
adds at a constant angle to the next vector. What we now need is a curve which
is made by adding a lot of infinitesimal vectors with the requirement that the angle
they make shall increase, not linearly, but as the square of the length of the curve.
To construct that curve involves slightly advanced mathematics, but we can always
construct it by actually drawing the arrows and measuring the angles. In any case,
we get the marvelous curve (called Cornu’s spiral) shown in Fig. 30-8. Now how
do we use this curve?

If we want the intensity, let us say, at point P, we add a lot of contributions of
different phases from point D on up to infinity, and from D down only to point Bp.
So we start at Bp in Fig. 30~-8, and draw a series of arrows of ever-increasing angle.
Therefore the total contribution above point Bp all goes along the spiraling curve.
If we were to stop integrating at some place, then the total amplitude would be a
vector from B to that point; in this particular problem we are going to infinity,
so the total answer is the vector Bp,. Now the position on the curve which
corresponds to point Bp on the object depends upon where point P is located,
since point D, the inflection point, always corresponds to the position of point P.
Thus, depending upon where P is located above B, the beginning point will fall
at various positions on the lower left part of the curve, and the resultant vector
Bp., will have many maxima and minima (Fig. 30-9).

Y
1,
1.0F
Fig. 30-9. The intensity near the P
edge of a shadow. The geometrical 025t
shadow edge is at xo. j/

Fig. 30-8. The addition of ampli-
tudes for many in-phase oscillators whose
phase delays vary as the square of the
distance from point D of the previous
figure.

%

On the other hand, if we are at Q, on the other side of P, then we are using
only one end of the spiral curve, and not the other end. In other words, we do not
even start at D, but at B, so on this side we get an intensity which continuously
falls off as Q goes farther into the shadow.

One point that we can immediately calculate with ease, to show that we really
understand it, is the intensity exactly opposite the edge. The intensity here is 1/4
that of the incident light. Reason: Exactly at the edge (so the endpoint B of the
arrow is at D in Fig. 30-8) we have half the curve that we would have had if we
were far into the bright region. If our point R is far into the light we go from one
end of the curve to the other, that is, one full unit vector; but if we are at the edge
of the shadow, we have only half the amplitude—1/4 the intensity.

In this chapter we have been finding the intensity produced in various direc-
tions from various distributions of sources. As a final example we shall derive a
formula which we shall need for the next chapter on the theory of the index of
refraction. Up to this point relative intensities have been sufficient for our purpose,
but this time we shall find the complete formula for the field in the following situa-
tion.
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Oscillating charge

Sheet of oscillating charges

Fig. 30-10. Radiation field of a
sheet of oscillating charges.

30-7 The field of a plane of oscillating charges

Suppose that we have a plane full of sources, all oscillating together, with
their motion in the plane and all having the same amplitude and phase. What is
the field at a finite, but very large, distance away from the plane? (We cannot
get very close, of course, because we do not have the right formulas for the field
close to the sources.) If we let the plane of the charges be the XY-plane, then we
want to find the field at the point P far out on the Z-axis (Fig. 30~10). We suppose
that there are 5 charges per unit area of the plane, and that each one of them has a
charge g. All of the charges move with simple harmonic motion, with the same
direction, amplitude, and phase. We let the motion of each charge, with respect
1o its own average position, be-x cos wt. Or, using the complex notation and re-
membering that the real part represents the actual motion, the motion can be
described by xge®™?.

Now we find the field at the point P from all of the charges by finding the
field there from each charge g, and then adding the contribiitions from all the
charges. We know that the radiation field is proportional to the acceleration of
the charge, which is —w?xe™’ (and is the same for every charge). The electric
field that we want at the point P due to a charge at the point Q is proportional to
the acceleration of the charge g, but we have to remember that the field at the point
P at the instant ¢ is given by the acceleration of the charge at the earlier time
! =t — r/c, where r/c is the time it takes the waves to travel the distance r
from Q to P. Therefore the field at P is proportional to

—wlxge™t—rlo, (30.10)

Using this value for the acceleration as seen from P in our formula for the electric
field at large distances from a radiating charge, we get

Electric field at P\ = g w?xee™¢—"
from charge at Q/ = 4meoc? r

(approx.). (30.11)

Now this formula is not quite right, because we should have used not the
acceleration of the charge but its component perpendicular to the line QP. We shall
suppose, however, that the point P is so far away, compared with the distance of
the point Q from the axis (the distance p in Fig. 30-9), for those changes that we
need to take into account, that we can leave out the cosine factor (which would
be nearly equal to 1 anyway).

To get the total field at P, we now add the effects of all the charges in the plane.
We should, of course, make a vector sum. But since the direction of the electric
field is nearly the same for all the charges, we may, in keeping with the approxima-
tion we have already made, just add the magnitudes of the fields. To our approxi-
mation the field at P depends only on the distance r, so all charges at the same r
produce equal fields. So we add, first, the fields of those charges in a ring of width
dp and radius p. Then, by taking the integral over all p, we will obtain the total field.

The number of charges in the ring is the product of the surface area of the
ring, 27p dp, and 5, the number of charges per unit area. We have, then,

2 tw(t—r/c)

Total field at P = / q_ @ Xxee
47regc? r

< q - 27p dp. (30.12)

We wish to evaluate this integral from p = 0 to p = oo. The variable ¢, of
course, is to be held fixed while we do the integral, so the only varying quantities
are p and r. Leaving out all the constant factors, including the factor e*, for the
moment, the integral we wish is

p=x e—iwr/c
p dp. (30.13)
p=0

;
To do this integral we need to use the relation between » and p:

r? = p? + 22 (30.14)
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Since z is independent of p, when we take the differential of this equation, we get
2rdr = 2pdp,

which is lucky, since in our integral we can replace p dp by r dr and the r will cancel
the one in the denominator. The integral we want is then the simpler one

/ el gy, (30.15)

=2

To integrate an exponential is very easy. We divide by the coefficient of r in the
exponent and evaluate the exponential at the limits. But the limits of r are not the
same as the limits of p. When p = 0, we have r = z, so the limits of r are z to
infinity. We get for the integral

— L e — gm0, (30.16)

iw

where we have written oo for (r/c) o, since they both just mean a very large
number!

Now e~ is a mysterious quantity. Its real part, for example, is cos (— o),
which, mathematically speaking, is completely indefinite (although we would
expect it to be somewhere—or everywhere (?)—between +1 and —1!). But ina
physical situation, it can mean something quite reasonable, and usually can just
be taken to be zero. To see that this is so in our case, we go back to consider again
the original integral (30.15).

We can understand (30.15) as a sum of many small complex numbers, each of
magnitude Ar, and with the angle 6 = —wr/c in the complex plane. We can try
to evaluate the sum by a graphical method. In Fig. 30-11 we have drawn the first
five pieces of the sum. Each segment of the curve has the length Ar and is placed
at the angle A = —w Ar/c with respect to the preceding piece. The sum for
these first five pieces is represented by the arrow from the starting point to the
end of the fifth segment. As we continue to add pieces we shall trace out a polygon
until we get back to the starting point (approximately) and then start around once
more. Adding more pieces, we just go round and round, staying close to a circle
whose radius is easily shown to be ¢/w. We can see now why the integral does not
give a definite answer!

But now we have to go back to the physics of the situation. In any real
situation the plane of charges cannot be infinite in extent, but must sometime stop.
If it stopped suddenly, and was exactly circular in shape, our integral would have
some value on the circle in Fig. 30~11. If, however, we let the number of charges
in the plane gradually taper off at some large distance from the center (or else stop
suddenly but in an irregular shape so for larger p the entire ring of width dp no
longer contributes), then the coefficient n in the exact integral would decrease
toward zero. Since we are adding smaller pieces but still turning through the same
angle, the graph of our integral would then become a curve which is a spiral. The
spiral would eventually end up at the center of our original circle, as drawn in
Fig. 30-12. The physically correct integral is the complex number 4 in the figure
represented by the interval from the starting point to the center of the circle, which
is just equal to

i —iwz/c
i € f (30.17)

as you can work out for yourself. This is the same result we would get from Eq.
(30.16) if we set e~ = 0.

(There is also another reason why the contribution to the integral tapers off
for large values of r, and that is the factor we have omitted for the projection of
the acceleration on the plane perpendicular to the line PQ.)

We are, of course, interested only in physical situations, so we will take e™
equal to zero. Returning to our original formula (30.12) for the field and putting
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back all of the factors that go with the integral, we have the result

Total field at P = — 2’% iwxge™ =2/ (30.18)

(remembering that 1/i = —i).
It is interesting to note that (iwx,e™*) is just equal to the velocity of the charges,
so that we can also write the equation for the field as

Total field at P = — % [velocity of chargeslat ;—;/c, (30.19)
0

which is a little strange, because the retardation is just by the distance z, which is
the shortest distance from P to the plane of charges. But that is the way it comes
out—fortunately a rather simple formula. (We may add, by the way, that although
our derivation is valid only for distances far from the plane of oscillatory charges,
it turns out that the formula (30.18) or (30.19) is correct at any distance z, even
forz < \)
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