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Probability

“The true logic of this world is in the calculus of probabilities.”
—James Clerk Maxwell

6-1 Chance and likelihood

“Chance” is a word which is in common use in everyday living. The radio
reports speaking of tomorrow’s weather may say: “There is a sixty percent chance
of rain.” You might say: “There is a small chance that I shall live to be one
hundred years old.” Scientists also use the word chance. A seismologist may be
interested in the question: “What is the chance that there will be an earthquake
of a certain size in Southern California next year?”” A physicist might ask the ques-
tion: “What is the chance that a particular geiger counter will register twenty
counts in the next ten seconds?” A politician or statesman might be interested
in the question: “What is the chance that there will be a nuclear war within the
next ten years?”’ You may be interested in the chance that you will learn some-
thing from this chapter.

By chance, we mean something like a guess. Why do we make guesses?
We make guesses when we wish to make a judgment but have incomplete infor-
mation or uncertain knowledge. We want to make a guess as to what things are,
or what things are likely to happen. Often we wish to make a guess because we
have to make a decision. For example: Shall I take my raincoat with me tomorrow ?
For what earth movement should I design a new building? Shall I build myself
a fallout shelter? Shall I change my stand in international negotiations? Shall
I go to class today?

Sometimes we make guesses because we wish, with our limited knowledge,
to say as much as we can about some situation. Really, any generalization is in
the nature of a guess. Any physical theory is a kind of guesswork. There are good
guesses and there are bad guesses. The theory of probability is a system for making
better guesses. The language of probability allows us to speak quantitatively
about some situation which may be highly variable, but which does have some
consistent average behavior.

Let us consider the flipping of a coin. If the toss—and the coin—are *“‘honest,”
we have no way of knowing what to expect for the outcome of any particular toss.
Yet we would feel that in a large number of tosses there should be about equal
numbers of heads and tails. We say: “The probability that a toss will land heads
is 0.5.”

We speak of probability only for observations that we contemplate being made
in the future. By the “probability” of a particular outcome of an observation we
mean our estimate for the most lkely fraction of a number of repeated observa-
tions that will yield that particular outcome. If we imagine repeating an observa-
tion—such as looking at a freshly tossed coin—AN times, and if we call N4 our
estimate of the most likely number of our observations that will give some specified
result 4, say the result “heads,” then by P(A4), the probability of observing 4,
we mean

P(4) = N4/N. 6.1)

Our definition requires several comments. First of all, we may speak of a
probability of something happening only if the occurrence is a possible outcome
of some repeatable observation. It is not clear that it would make any sense to
ask: “What is the probability that there is a ghost in that house?”’
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You may object that no situation is exactly repeatable. That is right. Every
different observation must at least be at a different time or place. All we can say
is that the “repeated’” observations should, for our intended purposes, appear
to be equivalent. We should assume, at least, that each observation was made
from an equivalently prepared situation, and especially with the same degree of
ignorance at the start. (If we sneak a look at an opponent’s hand in a card game,
our estimate of our chances of winning are different than if we do not')

We should emphasize that N and N4 in Eq. (6.1) are not intended to represent
numbers based on actual observations. N, is our best estimate of what would
occur in N unagined observations. Probability depends, therefore, on our knowledge
and on our ability to make estimates. In effect, on our common sense! Fortunately,
there is a certain amount of agreement in the common sense of many things, so
that different people will make the same estimate. Probabilities need not, however,
be “absolute” numbers. Since they depend on our ignorance, they may become
different if our knowledge changes.

You may have noticed another rather “subjective” aspect of our definition
of probability. We have referred to N4 as “our estimate of the most likely num-
ber...” We do not mean that we expect to observe exactly N 4, but that we expect
a number near N4, and that the number N4 is more likely than any other number
in the vicinity. If we toss a coin, say, 20 times, we should expect that the number
of heads would not be very likely to be exactly 15, but rather only some number
near to 15, say 12, 13, 14, 15, 16, or 17. However, if we must choose, we would
decide that 15 heads is more Lkely than any other number. We would write
P(heads) = 0.5.

Why did we choose 15 as more likely than any other number? We must
have argued with ourselves in the following manner: If the most likely number of
heads is Ny in a total number of tosses N, then the most likely number of tails
Nris (N — Ng). (We are assuming that every toss gives either heads or tails,
and no “other” result!) But if the coin is “honest,” there is no preference for heads
or tails. Until we have some reason to think the coin (or toss) is dishonest, we must
give equal likelihoods for heads and tails. So we must set Ny = Ng. It follows
that Ny = Ny = N/2, or P(H) = p(T) = 0.5.

We can generalize our reasoning to any situation in which there are m dif-
ferent but “equivalent” (that is, equally likely) possible results of an observation.
If an observation can yield m different results, and we have reason to believe that
any one of them is as likely as any other, then the probability of a particular
outcome A4 is P(4) = 1/m.

If there are seven different-colored balls in an opaque box and we pick one
out “at random™ (that is, without looking), the probability of getting a ball of a
particular color is #. The probability that a “blind draw” from a shuffled deck
of 52 cards will show the ten of hearts is &. The probability of throwing a double-
one with dice is 4.

In Chapter 5 we described the size of a nucleus in terms of its apparent area, or
““cross section.” When we did so we were really talking about probabilities. When we
shoot a high-energy particle at a thin slab of material, there is some chance that it will
pass right through and some chance that it will hit a nucleus. (Since the nucleus is so
small that we cannot see it, we cannot aim right at a nucleus. We must “shoot blind.”)
If there are » atoms in our slab and the nucleus of each atom has a cross-sectional area
o, then the total area “shadowed” by the nuclei is no. In a large number N of random
shots, we expect that the number of hits N of some nucleus will be 1n the ratio to N as
the shadowed area 1s to the total area of the slab:

N¢/N = nofA. (6.2)
We may say, therefore, that the probability that any one projectile particle will suffer
a collision in passing through the slab is
n

Py = y a, 6.3)

where n/A is the number of atoms per unit area in our slab.
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6-2 Fluctuations

We would like now to use our ideas about probability to consider in some
greater detail the question: “How many heads do I really expect to get if I toss
a coin N times?” Before answering the question, however, let us look at what
does happen in such an ‘“‘experiment.” Figure 6-1 shows the results obtained in
the first three “runs’ of such an experiment in which N = 30. The sequences of
‘“heads” and “‘tails” are shown just as they were obtained. The first game gave
11 heads; the second also 11; the third 16. In three trials we did not once get 15
heads. Should we begin to suspect the coin? Or were we wrong in thinking that
the most likely number of “heads” in such a game is 15? Ninety-seven more runs
were made to obtain a total of 100 experiments of 30 tosses each. The results
of the experiment are given in Table 6-1.*
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Fig. 6-2. Summary of the results of 100 games of 30 tosses each. The vertical
bars show the number of games in which a score of k heads was obtained. The dashed
curve shows the expected numbers of games with the score k obtained by a proba-

bility computation.

Looking at the numbers in Table 6-1, we see that most of the results are
“near” 15, in that they are between 12 and 18. We can get a better feeling for the
details of these results if we plot a graph of the distribution of the results. We
count the number of games in which a score of & was obtained, and plot this
number for each k. Such a graph is shown in Fig. 6-2. A score of 15 heads was
obtained in 13 games. A score of 14 heads was also obtained 13 times. Scores of
16 and 17 were each obtained more than 13 times. Are we to conclude that there
is some bias toward heads? Was our “‘best estimate’ not good enough? Should

* After the first three games, the experiment was actually done by shaking 30 pennies
violently 1n a box and then counting the number of heads that showed.
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we conclude now that the “most likely” score for a run of 30 tosses is really 16
heads? But wait! In all the games taken together, there were 3000 tosses. And the
total number of heads obtained was 1492. The fraction of tosses that gave heads
is 0.497, very nearly, but slightly /ess than half. We should certainly not assume
that the probability of throwing heads is greater than 0.5! The fact that one par-
ticular set of observations gave 16 heads most often, is a fluctuation. We still expect
that the most likely number of heads is 15.

We may ask the question: “What is the probability that a game of 30 tosses
will yield 15 heads—or 16, or any other number?” We have said that in a game
of one toss, the probability of obtaining one head is 0.5, and the probability of
obtaining no head is 0.5. In a game of two tosses there are four possible outcomes:
HH, HT, TH, TT. Since each of these sequences is equally likely, we conclude
that (a) the probability of a score of two heads is 1, (b) the probability of a score
of one head is %, (c) the probability of a zero score is 3. There are two ways of
obtaining one head, but only one of obtaining either zero or two heads.

Consider now a game of 3 tosses. The third toss is equally likely to be heads
or tails. There is only one way to obtain 3 heads: we must have obtained 2 heads
on the first two tosses, and then heads on the last. There are, however, three ways
of obtaining 2 heads. We could throw tails after having thrown two heads (one
way) or we could throw heads after throwing only one head in the first two tosses
(two ways). So for scores of 3-H, 2-H, 1-H, 0-H we have that the number of equally
likely ways is 1, 3, 3, 1, with a total of 8 different possible sequences. The prob-
abilities are §, 2, §, &

The argument we have been making can be summarized by a diagram like that
in Fig. 6-3. Itis clear how the diagram should be continued for games with a larger
number of tosses. Figure 6—4 shows such a diagram for a game of 6 tosses. The
number of ‘“‘ways” to any point on the diagram is just the number of different
“paths” (sequences of heads and tails) which can be taken from the starting point.
The vertical position gives us the total number of heads thrown. The set of num-
bers which appears in such a diagram is known as Pascal’s triangle. The numbers
are also known as the binomial coefficients, because they also appear in the ex-
pansion of (@ + b)*. If we call n the number of tosses and k the number of heads
thrown, then the numbers in the diagram are usually designated by the symbol
(3). We may remark in passing that the binomial coefficients can also be com-

puted from
ny _ n!
k)~ kK@n— k)’

where n!, called “n-factorial,” represents the product (n)(n — 1)(n — 2)...(3)
@)

We are now ready to compute the probability P(k, n) of throwing k heads in
n tosses, using our definition Eq. (6.1). The total number of possible sequences
is 2™ (since there are 2 outcomes for each toss), and the number of ways of obtain-
ing k heads is (), all equally likely, so we have

P(k,n) = -2;%

(6.4)

(6.5)

Since P(k, n) is the fraction of games which we expect to yield k heads, then
in 100 games we should expect to find k heads 100 - P(k, n) times. The dashed
curve in Fig. 6-2 passes through the points computed from 100 - P(k, 30). We
see that we expect to obtain a score of 15 heads in 14 or 15 games, whereas this
score was observed in 13 games. We expect a score of 16 in 13 or 14 games, but
we obtained that score in 16 games. Such fluctuations are “part of the game.”

The method we have just used can be applied to the most general situation
in which there are only two possible outcomes of a single observation. Let us
designate the two outcomes by W (for “win’”) and L (for “lose™). In the general
case, the probability of W or L in a single event need not be equal. Let p be the
probability of obtaining the result W. Then g, the probability of L, is necessarily
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(1 — p). In a set of n trials, the probability P(k, n) that W will be obtained k
times is
P(k,n) = (3)prq . (6.6)

This probability function is called the Bernoulli or, also, the binomial probability.

6-3 The random walk

There is another interesting problem in which the idea of probability is re-
quired. Itis the problem of the “random walk.” In its simplest version, we imagine
a “game” in which a “player” starts at the point x = 0 and at each “move”
is required to take a step either forward (toward +x) or backward (toward — x).
The choice is to be made randomly, determined, for example, by the toss of a coin.
How shall we describe the resulting motion? In its general form the problem is
related to the motion of atoms (or other particles) in a gas—called Brownian
motion—and also to the combination of errors in measurements. You will see
that the random-walk problem is closely related to the coin-tossing problem we
have already discussed.

First, let us Jook at a few examples of a random walk. We may characterize
the walker’s progress by the net distance Dy traveled in N steps. We show in the
graph of Fig. 6-5 three examples of the path of a random walker. (We have used
for the random sequence of choices the results of the coin tosses shown in Fig.
6-1.)
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Fig. 6-5. The progress made in a random walk. The horizontal coordinate N
is the total number of steps taken; the vertical coordinate D(N) is the net distance
moved from the starting position.

What can we say about such a motion? We might first ask: “How far does
he get on the average?” We must expect that his average progress will be zero,
since he is equally likely to go either forward or backward. But we have the feel-
ing that as N increases, he is more likely to have strayed farther from the starting
point. We might, therefore, ask what is his average distance travelled in absolute
value, that is, what is the average of |D|. It is, however, more convenient to deal
with another measure of “progress,” the square of the distance: D? is positive
for either positive or negative motion, and is therefore a reasonable measure of
such random wandering.

We can show that the expected value of D is just N, the number of steps
taken. By ‘“expected value” we mean the probable value (our best guess), which
we can think of as the expected average behavior in many repeated sequences.
We represent such an expected value by (D#), and may refer to it also as the “mean
square distance.” After one step, D? is always +1, so we have certainly (D}) = 1.
(All distances will be measured in terms of a unit of one step. We shall not continue
to write the units of distance.)
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The expected value of D2 for N > 1 can be obtained from Dy_,. If, after
(N — 1) steps, we have Dy__y, then after N steps we have Dy = Dy_; + 1 or
Dy = Dy_; — 1. For the squares,

Di_y + 2Dy_y + 1,
D} = or 6.7)
D¥_1 — 2Dy_; + 1.

In a number of independent sequences, we expect to obtain each value one-half
of the time, so our average expectation is just the average of the two possible
values. The expected value of Dy is then D3_, 4+ 1. In general, we should
expect for D _, its “expected value” (Df_,) (by definition!). So

(DR) = (Dh_1) + L (6.8)
We have already shown that (D?) = 1; it follows then that
Dy = N, (6.9)

a particularly simple result!

If we wish a number like a distance, rather than a distance squared, to repre-
sent the “progress made away from the origin” in a random walk, we can use the
“root-mean-square distance” Dypyg:

D,y = V(D%) = V/N. (6.10)

We have pointed out that the random walk is closely similar in its mathe-
matics to the coin-tossing game we considered at the beginning of the chapter.
If we imagine the direction of each step to be in correspondence with the appearance
of heads or tails in a coin toss, then D is just Ny — Nr, the difference in the num-
ber of heads and tails. Since Ny + Ny = N, the total number of steps (and tosses),
we have D = 2Ny — N. We have derived earlier an expression for the expected
distribution of Ny (also called k) and obtained the result of Eq. (6.5). Since
N is just a constant, we have the corresponding distribution for D. (Since for
every head more than N/2 there is a tail “missing,” we have the factor of 2 between
Ny and D.) The graphs of Fig. 6-2 represent the distribution of distances we might
get in 30 random steps (where k = 15istoberead D = 0;k = 16, D = 2;etc.).

The variation of Ny from its expected value N/2 is

N_D

NH—2 3

6.11)
The rms deviation is

<N - E) = 4V/N. (6.12)
2 rms

According to our result for D.,s, we expect that the “typical” distance in
30 steps ought to be /30 = 5.5, or a typical k should be about 5.5/2 = 2.8
units from 15. We see that the “width” of the curve in Fig. 6~2, measured from
the center, is just about 3 units, in agreement with this result.

We are now in a position to consider a question we have avoided until now.
How shall we tell whether a coin is “honest” or “loaded”? We can give now
at least a partial answer. For an honest coin, we expect the fraction of the times
heads appears to be 0.5, that is,

(Nm) _
—W’L = 0.5. (6.13)

We also expect an actual Ny to deviate from N/2 by about v/N/2, or the fraction
to deviate by

The larger N is, the closer we expect the fraction Ny /N to be to one-half.
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In Fig. 6-6 we have plotted the fraction Ny /N for the coin tosses reported
earlier in this chapter. We see the tendency for the fraction of heads to approach
0.5 for large N. Unfortunately, for any given run or combination of runs there is
no guarantee that the observed deviation will be even near the expected deviation.
There is always the finite chance that a large fluctuation—a long string of heads
or tails—will give an arbitrarily large deviation. All we can say is that if the
deviation is near the expected 1/2+/N (say within a factor of 2 or 3), we have no
reason to suspect the honesty of the coin. If it is much larger, we may be suspi-
cious, but cannot prove, that the coin is loaded (or that the tosser is clever!).

We have also not considered how we should treat the case of a “coin” or
some similar “‘chancy” object (say a stone that always lands in either of two posi-
tions) that we have good reason to believe should have a different probability for
heads and tails. We have defined P(H) = (Ng)/N. How shall we know what to
expect for Ng? In some cases, the best we can do is to observe the number of
heads obtained in large numbers of tosses. For want of anything better, we must
set (Ng) = Np(observed). (How could we expect anything else?) We must under-
stand, however, that in such a case a different experiment, or a different observer,
might conclude that P(H) was different. We would expect, however, that the various
answers should agree within the deviation 1/2+/N [if P(H) is near one-half]. An
experimental physicist usually says that an “experimentally determined” probability
has an “error,” and writes

1

Py = N2 o N (6.14)

There is an implication in such an expression that there is a “true” or “correct”
probability which could be computed if we knew enough, and that the observation
may be in “error” due to a fluctuation. There is, however, no way to make such
thinking logically consistent. It is probably better to realize that the probability
concept is in a sense subjective, that it is always based on uncertain knowledge,
and that its quantitative evaluation is subject to change as we obtain more
information.

64 A probability distribution

Let us return now to the random walk and consider a modification of it.
Suppose that in addition to a random choice of the direction (+ or —) of each
step, the length of each step also varied in some unpredictable way, the only condi-
tion being that on the average the step length was one unit. This case is more
representative of something like the thermal motion of a molecule in a gas. If
we call the length of a step .S, then .S may have any value at all, but most often
will be “near” 1. To be specific, we shall let (S%) = 1 or, equivalently, Syms = 1.
Our derivation for {D?) would proceed as before except that Eq. (6.8) would be
changed now to read

(D} = (DF_1) + (5% = (Dh—1) + L (6.15)

We have, as before, that
(D¥) = N. (6.16)
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Fig. 6~7. The probability density for ending up at the distance D from the starting
place in a random walk of N steps. (D is measured in units of the rms step length.)

What would we expect now for the distribution of distances D? What is,
for example, the probability that D = O after 30 steps? The answer is zero!
The probability is zero that D will be any particular value, since there is no chance
at all that the sum of the backward steps (of varying lengths) would exactly equal
the sum of forward steps. We cannot plot a graph like that of Fig. 6-2.

We can, however, obtain a representation similar to that of Fig. 6-2, if we
ask, not what is the probability of obtaining D exactly equal to 0, 1, or 2, but
instead what is the probability of obtaining D near 0, 1, or 2. Let us define P(x, Ax)
as the probability that D will lie in the interval Ax located at x (say from x to
x 4+ Ax). We expect that for small Ax the chance of D landing in the interval
is proportional to Ax, the width of the interval. So we can write

P(x, Ax) = p(x) Ax. (6.17)

The function p(x) is called the probability density.

The form of p(x) will depend on ¥, the number of steps taken, and also on
the distribution of individual step lengths. We cannot demonstrate the proofs
here, but for large N, p(x) is the same for all reasonable distributions in individual
step lengths, and depends only on N. We plot p(x) for three values of N in Fig.
6-7. You will notice that the “half-widths” (typical spread from x = 0) of these
curves is /N, as we have shown it should be.

You may notice also that the value of p(x) near zero is inversely proportional
to v/N. This comes about because the curves are all of a similar shape and their
areas under the curves must all be equal. Since p(x) Ax is the probability of find-
ing D in Ax when Ax is small, we can determine the chance of finding D somewhere
inside an arbitrary interval from x; to x., by cutting the interval in a number of
small increments Ax and evaluating the sum of the terms p(x) Ax for each incre-
ment. The probability that D lands somewhere between x; and x,, which we may
write P(x; < D < x3), is equal to the shaded area in Fig. 6-8. The smaller we
take the increments Ax, the more correct is our result. We can write, therefore,

P(x; < D < x3) = 3 p(x) Ax = [ "2 p(x) dx. (6.18)

Ty

The area under the whole curve is the probability that D lands somewhere
(that is, has some value between x = —w and x = + ). That probability is
surely 1. We must have that

[ ptydx = 1. (6.19)

—
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Since the curves in Fig. 6-7 get wider in proportion to v/, their heights must be
proportional to 1/4/N to maintain the total area equal to 1.

The probability density function we have been describing is one that is en-
countered most commonly. It is known as the normal or gaussian probability
density. It has the mathematical form

pix) = —— =120, (6.20)
oV 2T

where o is called the standard deviation and is given, in our case, by ¢ = /N
or, if the rms step size is different from 1, by ¢ = /N Stms.

We remarked earlier that the motion of a molecule, or of any particle, in a gas
is like 2 random walk. Suppose we open a bottle of an organic compound and let
some of its vapor escape into the air. If there are air currents, so that the air is
circulating, the currents will also carry the vapor with them. But even in perfectly
still air, the vapor will gradually spread out—will diffuse—until it has penetrated
throughout the room. We might detect it by its color or odor. The individual
molecules of the organic vapor spread out in still air because of the molecular
motions caused by collisions with other molecules. If we know the average “step”
size, and the number of steps taken per second, we can find the probability that
one, or several, molecules will be found at some distance from their starting point
after any particular passage of time. As time passes, more steps are taken and the
gas spreads out as in the successive curves of Fig. 6-7. In a later chapter, we shall
find out how the step sizes and step frequencies are related to the temperature and
pressure of a gas.

Earlier, we said that the pressure of a gas is due to the molecules bouncing
against the walls of the container. When we come later to make a more quantita-
tive description, we will wish to know how fast the molecules are going when they p(v)
bounce, since the impact they make will depend on that speed. We cannot, how-
ever, speak of the speed of the molecules. It is necessary to use a probability
description. A molecule may have any speed, but some speeds are more likely
than others. We describe what is going on by saying that the probability that any
particular molecule will have a speed between » and v 4 Av is p(v) Av, where
p[v), a probability density, is a given function of the speed v. We shall see later
how Maxwell, using common sense and the ideas of probability, was able to @ v v v
find a mathematical expression for p(v). The form* of the function p(v) is shown
in Fig. 6-9. Velocities may have any value, but are most likely to be near the Fig. 6-9. The distribution of velocities
most probable or expected value (v). of the molecules in a gas.

We often think of the curve of Fig. 6-9 in a somewhat different way. If we
consider the molecules in a typical container (with a volume of, say, one liter),
then there are a very large number N of molecules present (N ~ 1022), Since
p(v) Av is the probability that one molecule will have its velocity in Av, by our
definition of probability we mean that the expected number (AN) to be found with
a velocity in the interval Av is given by

N p(v)

'
'
I
|
1
|
1
]
|
|
'
'
1

(AN) = Np(v) Av. 6.21)

We call N p(v) the “distribution in velocity.” The area under the curve between
two velocities v; and v,, for example the shaded area in Fig. 6-9, represents
[for the curve Np(v)] the expected number of molecules with velocities between
vy and vo. Since with a gas we are usually dealing with large numbers of molecules,
we expect the deviations from the expected numbers to be small (like 1/+/N), so
we often neglect to say the “expected” number, and say instead: “The number of
molecules with velocities between v, and v, is the area under the curve.” We
should remember, however, that such statements are always about probable
numbers.

* Maxwell’s expression is p(v) = Cv2e—2*2, where a is a constant related to the tem-
perature and C is chosen so that the total probability is one.
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Fig. 6-10. Probability densities for
observation of the position and velocity
of a particle.

6-5 The uncertainty principle

The ideas of probability are certainly useful in describing the behavior of
the 1022 or so molecules in a sample of a gas, for it is clearly impractical even
to attempt to write down the position or velocity of each molecule. When prob-
ability was first applied to such problems, it was considered to be a convenience—
a way of dealing with very complex situations. We now believe that the ideas of
probability are essential to a description of atomic happenings. According to
quantum mechanics, the mathematical theory of particles, there is always some
uncertainty in the specification of positions and velocities. We can, at best, say
that there is a certain probability that any particle will have a position near some
coordinate x.

We can give a probability density p;(x), such that p,(x) Ax is the probability
that the pdrticle will be found between x and x + Ax. If the particle is reasonably
well localized, say near x,, the function p,(x) might be given by the graph of
Fig. 6-10(a). Similarly, we must specify the velocity of the particle by means of
a probability density pa(v), with po(v) Av the probability that the velocity will
be found between v and v + Av.

It is one of the fundamental results of quantum mechanics that the two func-
tions p,(x) and p,(v) cannot be chosen independently and, in particular, cannot
both be made arbitrarily narrow. If we call the typical “width” of the p;(x)
curve [Ax], and that of the ps(v) curve [Av] (as shown in the figure), nature demands
that the product of the two widths be at least as big as the number 4/m, where m
is the mass of the particle and 4 is a fundamental physical constant called Planck’s
constant. We may write this basic relationship as

[Ax] - [Av] > h/m. 6.22)

This equation is a statement of the Heisenberg uncertainty principle that we
mentioned earlier.

Since the right-hand side of Eq. (6.22) is a constant, this equation says that
if we try to “pin down” a particle by forcing it to be at a particular place, it ends
up by having a high speed. Or if we try to force it to go very slowly, or at a
precise velocity, it “spreads out” so that we do not know very well just where
itis. Particles behave in a funny way!

The uncertainty principle describes an inherent fuzziness that must exist in
any attempt to describe nature. Our most precise description of nature must
be in terms of probabilities. There are some people who do not like this way of
describing nature. They feel somehow that if they could only tell what is really
going on with a particle, they could know its speed and position simultaneously.
In the early days of the development of quantum mechanics, Einstein was quite
worried about this problem. He used to shake his head and say, “But, surely God
does not throw dice in determining how electrons should go!” He worried about
that problem for a long time and he probably never really reconciled himself to
the fact that this is the best description of nature that one can give. There are
still one or two physicists who are working on the problem who have an intuitive
conviction that it is possible somehow to describe the world in a different way
and that all of this uncertainty about the way things are can be removed. No one
has yet been successful.

The necessary uncertainty in our specification of the position of a particle
becomes most important when we wish to describe the structure of atoms. In
the hydrogen atom, which has a nucleus of one proton with one electron outside
of the nucleus, the uncertainty in the position of the electron is as large as the atom
itself! We cannot, therefore, properly speak of the electron moving in some ““orbit”
around the proton. The most we can say is that there is a certain chance p(r) AV,
of observing the electron in an element of volume AV at the distance r from the
proton. The probability density p(r) is given by quantum mechanics. For an
undisturbed hydrogen atom p(r) = Ae—"*%* which is a bell-shaped function like
that in Fig. 6-8. The number a is the “typical” radius, where the function is decreas-
ing rapidly. Since there is a small probability of finding the electron at distances
6-10



Fig. 6-11. A way of visualizing a hy-
drogen atom. The density (whiteness) of
the cloud represents the probability
density for observing the electron.

from the nucleus much greater than a, we may think of a as “the radius of the
atom,” about 10~ 19 meter.

We can form an image of the hydrogen atom by imagining a “cloud” whose
density is proportional to the probability density for observing the electron.
A sample of such a cloud is shown in Fig. 6-11. Thus our best “picture” of a
hydrogen atom is a nucleus surrounded by an “electron cloud” (although we really
mean a “probability cloud”). The electron is there somewhere, but nature per-
mits us to know only the chance of finding it at any particular place.

In its efforts to learn as much as possible about nature, modern physics has
found that certain things can never be “known” with certainty. Much of our
knowledge must always remain uncertain. The most we can know is in terms of
probabilities.
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